{"title":"将深度学习方法与传统的网络入侵检测方法进行比较","authors":"Bo Dong, Xue Wang","doi":"10.1109/ICCSN.2016.7586590","DOIUrl":null,"url":null,"abstract":"Recently, deep learning has gained prominence due to the potential it portends for machine learning. For this reason, deep learning techniques have been applied in many fields, such as recognizing some kinds of patterns or classification. Intrusion detection analyses got data from monitoring security events to get situation assessment of network. Lots of traditional machine learning method has been put forward to intrusion detection, but it is necessary to improvement the detection performance and accuracy. This paper discusses different methods which were used to classify network traffic. We decided to use different methods on open data set and did experiment with these methods to find out a best way to intrusion detection.","PeriodicalId":158877,"journal":{"name":"2016 8th IEEE International Conference on Communication Software and Networks (ICCSN)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"182","resultStr":"{\"title\":\"Comparison deep learning method to traditional methods using for network intrusion detection\",\"authors\":\"Bo Dong, Xue Wang\",\"doi\":\"10.1109/ICCSN.2016.7586590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, deep learning has gained prominence due to the potential it portends for machine learning. For this reason, deep learning techniques have been applied in many fields, such as recognizing some kinds of patterns or classification. Intrusion detection analyses got data from monitoring security events to get situation assessment of network. Lots of traditional machine learning method has been put forward to intrusion detection, but it is necessary to improvement the detection performance and accuracy. This paper discusses different methods which were used to classify network traffic. We decided to use different methods on open data set and did experiment with these methods to find out a best way to intrusion detection.\",\"PeriodicalId\":158877,\"journal\":{\"name\":\"2016 8th IEEE International Conference on Communication Software and Networks (ICCSN)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"182\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th IEEE International Conference on Communication Software and Networks (ICCSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSN.2016.7586590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th IEEE International Conference on Communication Software and Networks (ICCSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSN.2016.7586590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison deep learning method to traditional methods using for network intrusion detection
Recently, deep learning has gained prominence due to the potential it portends for machine learning. For this reason, deep learning techniques have been applied in many fields, such as recognizing some kinds of patterns or classification. Intrusion detection analyses got data from monitoring security events to get situation assessment of network. Lots of traditional machine learning method has been put forward to intrusion detection, but it is necessary to improvement the detection performance and accuracy. This paper discusses different methods which were used to classify network traffic. We decided to use different methods on open data set and did experiment with these methods to find out a best way to intrusion detection.