图像序列的共分割

D. Cheng, Mário A. T. Figueiredo
{"title":"图像序列的共分割","authors":"D. Cheng, Mário A. T. Figueiredo","doi":"10.1109/ICIAP.2007.48","DOIUrl":null,"url":null,"abstract":"We present a generative model to perform cosegmentation on an arbitrary number of images, where cosegmentation has been defined as the task of segmenting simultaneously the common parts between a pair of images. We build upon a previous work that introduced a new approach to model-based clustering under prior knowledge, and exploit its simplicity and flexibility to solve the problem of cosegmentation. We show experiments performed with datasets as diverse as slices of an MRI scan, frames from a video sequence, images in a database of objects, and with a set of 3D range images.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Cosegmentation for Image Sequences\",\"authors\":\"D. Cheng, Mário A. T. Figueiredo\",\"doi\":\"10.1109/ICIAP.2007.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a generative model to perform cosegmentation on an arbitrary number of images, where cosegmentation has been defined as the task of segmenting simultaneously the common parts between a pair of images. We build upon a previous work that introduced a new approach to model-based clustering under prior knowledge, and exploit its simplicity and flexibility to solve the problem of cosegmentation. We show experiments performed with datasets as diverse as slices of an MRI scan, frames from a video sequence, images in a database of objects, and with a set of 3D range images.\",\"PeriodicalId\":118466,\"journal\":{\"name\":\"14th International Conference on Image Analysis and Processing (ICIAP 2007)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th International Conference on Image Analysis and Processing (ICIAP 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2007.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

我们提出了一个生成模型来对任意数量的图像执行共分割,其中共分割被定义为同时分割一对图像之间的公共部分的任务。我们在之前的工作基础上引入了一种新的基于先验知识的基于模型的聚类方法,并利用其简单性和灵活性来解决共分割问题。我们展示了用不同的数据集进行的实验,如MRI扫描的切片,视频序列的帧,对象数据库中的图像以及一组3D范围图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cosegmentation for Image Sequences
We present a generative model to perform cosegmentation on an arbitrary number of images, where cosegmentation has been defined as the task of segmenting simultaneously the common parts between a pair of images. We build upon a previous work that introduced a new approach to model-based clustering under prior knowledge, and exploit its simplicity and flexibility to solve the problem of cosegmentation. We show experiments performed with datasets as diverse as slices of an MRI scan, frames from a video sequence, images in a database of objects, and with a set of 3D range images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信