集成主动学习和上下文引导的激光雷达点云语义标注

Tengping Jiang, Yongjun Wang, Shuaibing Tao, Yunli Li, Shan Liu
{"title":"集成主动学习和上下文引导的激光雷达点云语义标注","authors":"Tengping Jiang, Yongjun Wang, Shuaibing Tao, Yunli Li, Shan Liu","doi":"10.1109/PRRS.2018.8486166","DOIUrl":null,"url":null,"abstract":"To alleviate the difficulties in obtaining training data sets of 3D point clouds, an active learning (AL) framework is proposed to iteratively select a small portion of unlabeled points to query their labels, and creates a minimum manually-annotated training set. To handle the biased sampling problem caused by category imbalance and local similarities, a neighbor-consistency prior is used to conduct an unbiased sampling for selecting the value samples into the training set. Additionally, to reduce the number of categories used in labeling, a higher-order MRF containing a regional label cost term, is exploited to refine the labeling results.","PeriodicalId":197319,"journal":{"name":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integrating Active Learning and Contextually Guide for Semantic Labeling of LiDAR Point Cloud\",\"authors\":\"Tengping Jiang, Yongjun Wang, Shuaibing Tao, Yunli Li, Shan Liu\",\"doi\":\"10.1109/PRRS.2018.8486166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To alleviate the difficulties in obtaining training data sets of 3D point clouds, an active learning (AL) framework is proposed to iteratively select a small portion of unlabeled points to query their labels, and creates a minimum manually-annotated training set. To handle the biased sampling problem caused by category imbalance and local similarities, a neighbor-consistency prior is used to conduct an unbiased sampling for selecting the value samples into the training set. Additionally, to reduce the number of categories used in labeling, a higher-order MRF containing a regional label cost term, is exploited to refine the labeling results.\",\"PeriodicalId\":197319,\"journal\":{\"name\":\"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRRS.2018.8486166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRRS.2018.8486166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了解决三维点云训练数据集获取困难的问题,提出了一种主动学习框架,迭代选择一小部分未标记点进行标记查询,生成最小人工标注训练集。为了解决类别不平衡和局部相似导致的偏抽样问题,采用邻居一致性先验进行无偏抽样,选择训练集中的值样本。此外,为了减少标签中使用的类别数量,利用包含区域标签成本项的高阶MRF来改进标签结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Active Learning and Contextually Guide for Semantic Labeling of LiDAR Point Cloud
To alleviate the difficulties in obtaining training data sets of 3D point clouds, an active learning (AL) framework is proposed to iteratively select a small portion of unlabeled points to query their labels, and creates a minimum manually-annotated training set. To handle the biased sampling problem caused by category imbalance and local similarities, a neighbor-consistency prior is used to conduct an unbiased sampling for selecting the value samples into the training set. Additionally, to reduce the number of categories used in labeling, a higher-order MRF containing a regional label cost term, is exploited to refine the labeling results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信