改进遥感图像像素分解的可能性c均值算法

Hu Dong-min
{"title":"改进遥感图像像素分解的可能性c均值算法","authors":"Hu Dong-min","doi":"10.11834/jrs.20050221","DOIUrl":null,"url":null,"abstract":"The existence of mixed pixels is the main factor influencing the classification accuracy of remotely sensed image. Fuzzy classification is an important method of unmixing the mixed pixels. Its results depend on how accurate the membership value to various types of each pixel after classification corresponds to its actual component. If the clustering number is not equal to the actual type number in the unsupervised classification, or there are some types untrained in the supervised classification, the accuracy of the popular algorithm, namely Fuzzy c-means (FCM) will be degraded. Fortunately, Possibilistic c-means (PCM) is insensitive to it and can work well. This paper proposes the pixel unmixing method of remotely sensed image based on PCM algorithm. The priority of the PCM is illustrated by an actual example in the supervised classification in this paper.","PeriodicalId":217329,"journal":{"name":"National Remote Sensing Bulletin","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Possibilistic c-Means Algorithm Improving the Pixel Unmixing of Remotely Sensed Image\",\"authors\":\"Hu Dong-min\",\"doi\":\"10.11834/jrs.20050221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of mixed pixels is the main factor influencing the classification accuracy of remotely sensed image. Fuzzy classification is an important method of unmixing the mixed pixels. Its results depend on how accurate the membership value to various types of each pixel after classification corresponds to its actual component. If the clustering number is not equal to the actual type number in the unsupervised classification, or there are some types untrained in the supervised classification, the accuracy of the popular algorithm, namely Fuzzy c-means (FCM) will be degraded. Fortunately, Possibilistic c-means (PCM) is insensitive to it and can work well. This paper proposes the pixel unmixing method of remotely sensed image based on PCM algorithm. The priority of the PCM is illustrated by an actual example in the supervised classification in this paper.\",\"PeriodicalId\":217329,\"journal\":{\"name\":\"National Remote Sensing Bulletin\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Remote Sensing Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11834/jrs.20050221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Remote Sensing Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11834/jrs.20050221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

混合像元的存在是影响遥感图像分类精度的主要因素。模糊分类是解混像元的一种重要方法。其结果取决于分类后每个像素对各种类型的隶属度值与其实际分量对应的精确程度。如果在无监督分类中聚类数不等于实际的类型数,或者在有监督分类中存在一些未训练的类型,那么目前流行的算法即模糊c均值(Fuzzy c-means, FCM)的准确率就会降低。幸运的是,可能性c均值(PCM)对它不敏感,可以很好地工作。提出了一种基于PCM算法的遥感图像像素解混方法。本文通过监督分类中的一个实例说明了PCM的优先级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Possibilistic c-Means Algorithm Improving the Pixel Unmixing of Remotely Sensed Image
The existence of mixed pixels is the main factor influencing the classification accuracy of remotely sensed image. Fuzzy classification is an important method of unmixing the mixed pixels. Its results depend on how accurate the membership value to various types of each pixel after classification corresponds to its actual component. If the clustering number is not equal to the actual type number in the unsupervised classification, or there are some types untrained in the supervised classification, the accuracy of the popular algorithm, namely Fuzzy c-means (FCM) will be degraded. Fortunately, Possibilistic c-means (PCM) is insensitive to it and can work well. This paper proposes the pixel unmixing method of remotely sensed image based on PCM algorithm. The priority of the PCM is illustrated by an actual example in the supervised classification in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信