{"title":"改进遥感图像像素分解的可能性c均值算法","authors":"Hu Dong-min","doi":"10.11834/jrs.20050221","DOIUrl":null,"url":null,"abstract":"The existence of mixed pixels is the main factor influencing the classification accuracy of remotely sensed image. Fuzzy classification is an important method of unmixing the mixed pixels. Its results depend on how accurate the membership value to various types of each pixel after classification corresponds to its actual component. If the clustering number is not equal to the actual type number in the unsupervised classification, or there are some types untrained in the supervised classification, the accuracy of the popular algorithm, namely Fuzzy c-means (FCM) will be degraded. Fortunately, Possibilistic c-means (PCM) is insensitive to it and can work well. This paper proposes the pixel unmixing method of remotely sensed image based on PCM algorithm. The priority of the PCM is illustrated by an actual example in the supervised classification in this paper.","PeriodicalId":217329,"journal":{"name":"National Remote Sensing Bulletin","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Possibilistic c-Means Algorithm Improving the Pixel Unmixing of Remotely Sensed Image\",\"authors\":\"Hu Dong-min\",\"doi\":\"10.11834/jrs.20050221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of mixed pixels is the main factor influencing the classification accuracy of remotely sensed image. Fuzzy classification is an important method of unmixing the mixed pixels. Its results depend on how accurate the membership value to various types of each pixel after classification corresponds to its actual component. If the clustering number is not equal to the actual type number in the unsupervised classification, or there are some types untrained in the supervised classification, the accuracy of the popular algorithm, namely Fuzzy c-means (FCM) will be degraded. Fortunately, Possibilistic c-means (PCM) is insensitive to it and can work well. This paper proposes the pixel unmixing method of remotely sensed image based on PCM algorithm. The priority of the PCM is illustrated by an actual example in the supervised classification in this paper.\",\"PeriodicalId\":217329,\"journal\":{\"name\":\"National Remote Sensing Bulletin\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Remote Sensing Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11834/jrs.20050221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Remote Sensing Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11834/jrs.20050221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Possibilistic c-Means Algorithm Improving the Pixel Unmixing of Remotely Sensed Image
The existence of mixed pixels is the main factor influencing the classification accuracy of remotely sensed image. Fuzzy classification is an important method of unmixing the mixed pixels. Its results depend on how accurate the membership value to various types of each pixel after classification corresponds to its actual component. If the clustering number is not equal to the actual type number in the unsupervised classification, or there are some types untrained in the supervised classification, the accuracy of the popular algorithm, namely Fuzzy c-means (FCM) will be degraded. Fortunately, Possibilistic c-means (PCM) is insensitive to it and can work well. This paper proposes the pixel unmixing method of remotely sensed image based on PCM algorithm. The priority of the PCM is illustrated by an actual example in the supervised classification in this paper.