面部特征检测和跟踪,具有自动模板选择功能

David Cristinacce, Tim Cootes
{"title":"面部特征检测和跟踪,具有自动模板选择功能","authors":"David Cristinacce, Tim Cootes","doi":"10.1109/FGR.2006.50","DOIUrl":null,"url":null,"abstract":"We describe an accurate and robust method of locating facial features. The method utilises a set of feature templates in conjunction with a shape constrained search technique. The current feature templates are correlated with the target image to generate a set of response surfaces. The parameters of a statistical shape model are optimised to maximise the sum of responses. Given the new feature locations the feature templates are updated using a nearest neighbour approach to select likely feature templates from the training set. We find that this template selection tracker (TST) method outperforms previous approaches using fixed template feature detectors. It gives results similar to the more complex active appearance model (AAM) algorithm on two publicly available static image sets and outperforms the AAM on a more challenging set of in-car face sequences","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Facial feature detection and tracking with automatic template selection\",\"authors\":\"David Cristinacce, Tim Cootes\",\"doi\":\"10.1109/FGR.2006.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an accurate and robust method of locating facial features. The method utilises a set of feature templates in conjunction with a shape constrained search technique. The current feature templates are correlated with the target image to generate a set of response surfaces. The parameters of a statistical shape model are optimised to maximise the sum of responses. Given the new feature locations the feature templates are updated using a nearest neighbour approach to select likely feature templates from the training set. We find that this template selection tracker (TST) method outperforms previous approaches using fixed template feature detectors. It gives results similar to the more complex active appearance model (AAM) algorithm on two publicly available static image sets and outperforms the AAM on a more challenging set of in-car face sequences\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

我们描述了一种精确和鲁棒的面部特征定位方法。该方法将一组特征模板与形状约束搜索技术相结合。将当前特征模板与目标图像关联,生成一组响应面。统计形状模型的参数被优化以最大化响应的总和。给定新的特征位置,使用最近邻方法从训练集中选择可能的特征模板来更新特征模板。我们发现这种模板选择跟踪(TST)方法优于以前使用固定模板特征检测器的方法。它在两个公开可用的静态图像集上给出了与更复杂的主动外观模型(AAM)算法相似的结果,并且在更具挑战性的车内面部序列集上优于AAM
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial feature detection and tracking with automatic template selection
We describe an accurate and robust method of locating facial features. The method utilises a set of feature templates in conjunction with a shape constrained search technique. The current feature templates are correlated with the target image to generate a set of response surfaces. The parameters of a statistical shape model are optimised to maximise the sum of responses. Given the new feature locations the feature templates are updated using a nearest neighbour approach to select likely feature templates from the training set. We find that this template selection tracker (TST) method outperforms previous approaches using fixed template feature detectors. It gives results similar to the more complex active appearance model (AAM) algorithm on two publicly available static image sets and outperforms the AAM on a more challenging set of in-car face sequences
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信