用于道具商店系统的数据驱动智能制造技术

Zhicheng Xu, Weinan Gao, Zhicun Chen, Rami J. Haddad, Scot Hudson, Ezebuugo Nwaonumah, Frank Zahiri, Jeremy Johnson
{"title":"用于道具商店系统的数据驱动智能制造技术","authors":"Zhicheng Xu, Weinan Gao, Zhicun Chen, Rami J. Haddad, Scot Hudson, Ezebuugo Nwaonumah, Frank Zahiri, Jeremy Johnson","doi":"10.1109/SERA57763.2023.10197769","DOIUrl":null,"url":null,"abstract":"In this paper, a data-driven framework was designed to predict manufacturing failure. The framework includes an autoregression model with the least mean square algorithm, a linear regression model with prediction intervals for short-term and long-term failure detection, and a feature extraction model with empirical mode decomposition. The analytical results validate that the designed data-driven model is a good candidate for failure predictions in smart manufacturing processes.","PeriodicalId":211080,"journal":{"name":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Smart Manufacturing Technologies for Prop Shop Systems\",\"authors\":\"Zhicheng Xu, Weinan Gao, Zhicun Chen, Rami J. Haddad, Scot Hudson, Ezebuugo Nwaonumah, Frank Zahiri, Jeremy Johnson\",\"doi\":\"10.1109/SERA57763.2023.10197769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a data-driven framework was designed to predict manufacturing failure. The framework includes an autoregression model with the least mean square algorithm, a linear regression model with prediction intervals for short-term and long-term failure detection, and a feature extraction model with empirical mode decomposition. The analytical results validate that the designed data-driven model is a good candidate for failure predictions in smart manufacturing processes.\",\"PeriodicalId\":211080,\"journal\":{\"name\":\"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERA57763.2023.10197769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERA57763.2023.10197769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文设计了一个数据驱动的制造故障预测框架。该框架包括基于最小均方算法的自回归模型、基于预测区间的短期和长期故障检测线性回归模型以及基于经验模态分解的特征提取模型。分析结果验证了所设计的数据驱动模型是智能制造过程中故障预测的良好候选模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Smart Manufacturing Technologies for Prop Shop Systems
In this paper, a data-driven framework was designed to predict manufacturing failure. The framework includes an autoregression model with the least mean square algorithm, a linear regression model with prediction intervals for short-term and long-term failure detection, and a feature extraction model with empirical mode decomposition. The analytical results validate that the designed data-driven model is a good candidate for failure predictions in smart manufacturing processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信