用copula确定随机变量乘积的分布

S. Ly, Kim-Hung Pho, S. Ly, W. Wong
{"title":"用copula确定随机变量乘积的分布","authors":"S. Ly, Kim-Hung Pho, S. Ly, W. Wong","doi":"10.2139/ssrn.3430862","DOIUrl":null,"url":null,"abstract":"Determining distributions of the functions of random variables is one of the most important problems in statistics and applied mathematics because distributions of functions have wide range of applications in numerous areas in economics, finance, risk management, science, and others. However, most studies only focus on the distribution of independent variables or focus on some common distributions such as multivariate normal joint distributions for the functions of dependent random variables. To bridge the gap in the literature, in this paper, we first derive the general formulas to determine both density and distribution of the product for two or more random variables via copulas to capture the dependence structures among the variables. We then propose an approach combining Monte Carlo algorithm, graphical approach, and numerical analysis to efficiently estimate both density and distribution. We illustrate our approach by examining the shapes and behaviors of both density and distribution of the product for two log-normal random variables on several different copulas, including Gaussian, Student-t, Clayton, Gumbel, Frank, and Joe Copulas, and estimate some common measures including Kendall’s coefficient, mean, median, standard deviation, skewness, and kurtosis for the distributions. We found that different types of copulas affect the behavior of distributions differently. In addition, we also discuss the behaviors via all copulas above with the same Kendall’s coefficient. Our results are the foundation of any further study that relies on the density and cumulative probability functions of product for two or more random variables. Thus, the theory developed in this paper is useful for academics, practitioners, and policy makers.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Determining Distribution for the Product of Random Variables by Using Copulas\",\"authors\":\"S. Ly, Kim-Hung Pho, S. Ly, W. Wong\",\"doi\":\"10.2139/ssrn.3430862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining distributions of the functions of random variables is one of the most important problems in statistics and applied mathematics because distributions of functions have wide range of applications in numerous areas in economics, finance, risk management, science, and others. However, most studies only focus on the distribution of independent variables or focus on some common distributions such as multivariate normal joint distributions for the functions of dependent random variables. To bridge the gap in the literature, in this paper, we first derive the general formulas to determine both density and distribution of the product for two or more random variables via copulas to capture the dependence structures among the variables. We then propose an approach combining Monte Carlo algorithm, graphical approach, and numerical analysis to efficiently estimate both density and distribution. We illustrate our approach by examining the shapes and behaviors of both density and distribution of the product for two log-normal random variables on several different copulas, including Gaussian, Student-t, Clayton, Gumbel, Frank, and Joe Copulas, and estimate some common measures including Kendall’s coefficient, mean, median, standard deviation, skewness, and kurtosis for the distributions. We found that different types of copulas affect the behavior of distributions differently. In addition, we also discuss the behaviors via all copulas above with the same Kendall’s coefficient. Our results are the foundation of any further study that relies on the density and cumulative probability functions of product for two or more random variables. Thus, the theory developed in this paper is useful for academics, practitioners, and policy makers.\",\"PeriodicalId\":260073,\"journal\":{\"name\":\"Mathematics eJournal\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3430862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3430862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

确定随机变量函数的分布是统计学和应用数学中最重要的问题之一,因为函数的分布在经济、金融、风险管理、科学等许多领域都有广泛的应用。然而,大多数研究只关注自变量的分布,或者关注一些常见的分布,如因变量函数的多元正态联合分布。为了弥补文献上的空白,本文首先推导了两个或多个随机变量的乘积密度和分布的一般公式,通过copula来捕捉变量之间的依赖结构。然后,我们提出了一种结合蒙特卡罗算法、图形方法和数值分析的方法来有效地估计密度和分布。我们通过检查几种不同copula(包括Gaussian、Student-t、Clayton、Gumbel、Frank和Joe copula)上两个对数正态随机变量的密度和分布的形状和行为来说明我们的方法,并估计一些常见的度量,包括分布的肯德尔系数、平均值、中位数、标准差、偏度和峰度。我们发现不同类型的copula对分布行为的影响是不同的。此外,我们还讨论了具有相同肯德尔系数的上述所有copula的行为。我们的结果是任何进一步研究的基础,依赖于密度和累积概率函数的乘积为两个或多个随机变量。因此,本文发展的理论对学者、从业者和政策制定者都是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining Distribution for the Product of Random Variables by Using Copulas
Determining distributions of the functions of random variables is one of the most important problems in statistics and applied mathematics because distributions of functions have wide range of applications in numerous areas in economics, finance, risk management, science, and others. However, most studies only focus on the distribution of independent variables or focus on some common distributions such as multivariate normal joint distributions for the functions of dependent random variables. To bridge the gap in the literature, in this paper, we first derive the general formulas to determine both density and distribution of the product for two or more random variables via copulas to capture the dependence structures among the variables. We then propose an approach combining Monte Carlo algorithm, graphical approach, and numerical analysis to efficiently estimate both density and distribution. We illustrate our approach by examining the shapes and behaviors of both density and distribution of the product for two log-normal random variables on several different copulas, including Gaussian, Student-t, Clayton, Gumbel, Frank, and Joe Copulas, and estimate some common measures including Kendall’s coefficient, mean, median, standard deviation, skewness, and kurtosis for the distributions. We found that different types of copulas affect the behavior of distributions differently. In addition, we also discuss the behaviors via all copulas above with the same Kendall’s coefficient. Our results are the foundation of any further study that relies on the density and cumulative probability functions of product for two or more random variables. Thus, the theory developed in this paper is useful for academics, practitioners, and policy makers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信