有界格上一致信息的构造

S. Bodjanova, M. Kalina
{"title":"有界格上一致信息的构造","authors":"S. Bodjanova, M. Kalina","doi":"10.1109/SISY.2014.6923558","DOIUrl":null,"url":null,"abstract":"Karaçal and Mesiar showed that it is possible to construct uninorms on an arbitrary bounded lattice. Particularly, they constructed the weakest and the strongest uninorm. In this paper another method for a construction of uninorms on bounded lattices is proposed. The cases of general bounded lattices as well as bounded lattices equipped with a special arithmetic operation, are discussed.","PeriodicalId":277041,"journal":{"name":"2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Construction of uninorms on bounded lattices\",\"authors\":\"S. Bodjanova, M. Kalina\",\"doi\":\"10.1109/SISY.2014.6923558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Karaçal and Mesiar showed that it is possible to construct uninorms on an arbitrary bounded lattice. Particularly, they constructed the weakest and the strongest uninorm. In this paper another method for a construction of uninorms on bounded lattices is proposed. The cases of general bounded lattices as well as bounded lattices equipped with a special arithmetic operation, are discussed.\",\"PeriodicalId\":277041,\"journal\":{\"name\":\"2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISY.2014.6923558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2014.6923558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

karaalal和Mesiar证明了在任意有界格上构造一致信息是可能的。特别是,他们制作了最弱和最强的制服。本文提出了在有界格上构造一致子的另一种方法。讨论了一般有界格和带有特殊算术运算的有界格的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of uninorms on bounded lattices
Karaçal and Mesiar showed that it is possible to construct uninorms on an arbitrary bounded lattice. Particularly, they constructed the weakest and the strongest uninorm. In this paper another method for a construction of uninorms on bounded lattices is proposed. The cases of general bounded lattices as well as bounded lattices equipped with a special arithmetic operation, are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信