从头开始理解用户意图

Ziheng Wang, Yonggang Qi, Jun Liu, Zhanyu Ma
{"title":"从头开始理解用户意图","authors":"Ziheng Wang, Yonggang Qi, Jun Liu, Zhanyu Ma","doi":"10.1109/SPLIM.2016.7528398","DOIUrl":null,"url":null,"abstract":"User intention understanding from text is an important task in NLP. In this paper, we study the problem of phone-changing intention prediction. And we propose a novel feature extraction method, which selects the most representative intention feature, to represent user's intention from text scratch. Then we adopt a supervised learning approach, that is to train SVM classifier, for intention prediction. In addition, we propose a novel phone-changing intention dataset that the text scratches and their corresponding labels are collected from real network environment. The experimental results validate the effectiveness of our proposed approach.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"User intention understanding from scratch\",\"authors\":\"Ziheng Wang, Yonggang Qi, Jun Liu, Zhanyu Ma\",\"doi\":\"10.1109/SPLIM.2016.7528398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User intention understanding from text is an important task in NLP. In this paper, we study the problem of phone-changing intention prediction. And we propose a novel feature extraction method, which selects the most representative intention feature, to represent user's intention from text scratch. Then we adopt a supervised learning approach, that is to train SVM classifier, for intention prediction. In addition, we propose a novel phone-changing intention dataset that the text scratches and their corresponding labels are collected from real network environment. The experimental results validate the effectiveness of our proposed approach.\",\"PeriodicalId\":297318,\"journal\":{\"name\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPLIM.2016.7528398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

从文本中理解用户意图是自然语言处理中的一项重要任务。本文主要研究换手机意向预测问题。提出了一种新的特征提取方法,即选择最具代表性的意图特征,从零开始表示用户的意图。然后我们采用监督学习的方法,即训练SVM分类器进行意向预测。此外,我们提出了一种新的换手机意图数据集,该数据集从真实的网络环境中收集文本划痕及其相应的标签。实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User intention understanding from scratch
User intention understanding from text is an important task in NLP. In this paper, we study the problem of phone-changing intention prediction. And we propose a novel feature extraction method, which selects the most representative intention feature, to represent user's intention from text scratch. Then we adopt a supervised learning approach, that is to train SVM classifier, for intention prediction. In addition, we propose a novel phone-changing intention dataset that the text scratches and their corresponding labels are collected from real network environment. The experimental results validate the effectiveness of our proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信