{"title":"用于多电平ULSI互连精确温度估计的封闭式解析热模型","authors":"TingYen Chiang, K. Saraswat","doi":"10.1109/VLSIC.2003.1221225","DOIUrl":null,"url":null,"abstract":"Accurate integrity assessment of on-chip interconnect temperature rise is essential for high performance chip design. This paper presents a compact analytical model for estimating the temperature rise of multilevel ULSI interconnects incorporating via effect. The predicted temperature distributions are shown to be in excellent agreement with the 3-D finite element thermal simulation (ANSYS) results. Additionally, this model provides an efficient approach to analyze realistic chip level interconnect temperature which is extremely difficult to do with ANSYS. Significant difference in temperature distribution and maximum temperature rise is observed between the realistic situation of heat dissipation with vias and the overly simplified case that ignores via effect. The closed-form expression is further applied to evaluate the impact of the interconnect heating on the various design rule parameters and scaling of deep sub-micron Cu/low-k interconnects.","PeriodicalId":270304,"journal":{"name":"2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Closed-form analytical thermal model for accurate temperature estimation of multilevel ULSI interconnects\",\"authors\":\"TingYen Chiang, K. Saraswat\",\"doi\":\"10.1109/VLSIC.2003.1221225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate integrity assessment of on-chip interconnect temperature rise is essential for high performance chip design. This paper presents a compact analytical model for estimating the temperature rise of multilevel ULSI interconnects incorporating via effect. The predicted temperature distributions are shown to be in excellent agreement with the 3-D finite element thermal simulation (ANSYS) results. Additionally, this model provides an efficient approach to analyze realistic chip level interconnect temperature which is extremely difficult to do with ANSYS. Significant difference in temperature distribution and maximum temperature rise is observed between the realistic situation of heat dissipation with vias and the overly simplified case that ignores via effect. The closed-form expression is further applied to evaluate the impact of the interconnect heating on the various design rule parameters and scaling of deep sub-micron Cu/low-k interconnects.\",\"PeriodicalId\":270304,\"journal\":{\"name\":\"2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2003.1221225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2003.1221225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Closed-form analytical thermal model for accurate temperature estimation of multilevel ULSI interconnects
Accurate integrity assessment of on-chip interconnect temperature rise is essential for high performance chip design. This paper presents a compact analytical model for estimating the temperature rise of multilevel ULSI interconnects incorporating via effect. The predicted temperature distributions are shown to be in excellent agreement with the 3-D finite element thermal simulation (ANSYS) results. Additionally, this model provides an efficient approach to analyze realistic chip level interconnect temperature which is extremely difficult to do with ANSYS. Significant difference in temperature distribution and maximum temperature rise is observed between the realistic situation of heat dissipation with vias and the overly simplified case that ignores via effect. The closed-form expression is further applied to evaluate the impact of the interconnect heating on the various design rule parameters and scaling of deep sub-micron Cu/low-k interconnects.