基于高斯混合模型及其成分分离的代码构造方法

Олексій Георгійович Голубничий
{"title":"基于高斯混合模型及其成分分离的代码构造方法","authors":"Олексій Георгійович Голубничий","doi":"10.18372/2410-7840.21.13765","DOIUrl":null,"url":null,"abstract":"Методи та підходи лінійного криптоаналізу криптографічних алгоритмів спрямовані на аналіз та виявлення взаємозв’язків між елементами відкритого тексту, шифротексту та ключа. У випадку лінійного криптоаналізу псевдовипадкових послідовностей та сигнально-кодових конструкцій, які побудовані на їх основі, аналізу та виявленню підлягають взаємозв’язки між елементами цих послідовностей та сигнально-кодових конструкцій, а також між їх внутрішніми структурами, їх складовими в утворюваних системах кодових конструкцій тощо. Ефективність реалізації лінійного криптоаналізу на різних його етапах може бути підвищена при структуризації (виявлення внутрішніх структур та взаємозв’язків між ними) досліджуваних кодових конструкцій, щодо яких у сторони здійснення криптоаналізу відсутня будь-яка апріорна інформація про їх структуру, або кодових конструкцій, які апріорі можуть вважатися такими, що мають стохастичну природу їх утворення. У статті запропоновано метод структуризації кодових конструкцій з апріорі невідомою структурою на основі аналізу кореляційних зв’язків між кодовими конструкціями, які представляються у цьому методі гаусівською змішаною моделлю з подальшим виділенням її компонент та кластеризацією досліджуваних кодових конструкцій з використанням обґрунтованої у статті параметрично-критеріальної модифікації EM-алгоритму з видаленням компонент. Метод дозволяє виокремлювати групи кодових конструкції з взаємопов’язаними структурами і далі виділяти ці взаємопов’язані структури у явному вигляді, в чому може полягати розв’язання ряду задач лінійного криптоаналізу, які пов’язані з виявленням структур та взаємозв’язків між ними. Показано приклад реалізації запропонованого методу для структуризації бінарних псевдовипадкових послідовностей Баркера, які використовуються як сигнально-кодові конструкції у широкосмугових системах передавання інформації та для яких з літературних джерел відомо, що вони були синтезовані методом напрямленого перебору і тому мають стохастичний апріорі неструктурований характер.","PeriodicalId":378015,"journal":{"name":"Ukrainian Information Security Research Journal","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method of structuring code constructions based on the Gaussian mixture model and separation of its components\",\"authors\":\"Олексій Георгійович Голубничий\",\"doi\":\"10.18372/2410-7840.21.13765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Методи та підходи лінійного криптоаналізу криптографічних алгоритмів спрямовані на аналіз та виявлення взаємозв’язків між елементами відкритого тексту, шифротексту та ключа. У випадку лінійного криптоаналізу псевдовипадкових послідовностей та сигнально-кодових конструкцій, які побудовані на їх основі, аналізу та виявленню підлягають взаємозв’язки між елементами цих послідовностей та сигнально-кодових конструкцій, а також між їх внутрішніми структурами, їх складовими в утворюваних системах кодових конструкцій тощо. Ефективність реалізації лінійного криптоаналізу на різних його етапах може бути підвищена при структуризації (виявлення внутрішніх структур та взаємозв’язків між ними) досліджуваних кодових конструкцій, щодо яких у сторони здійснення криптоаналізу відсутня будь-яка апріорна інформація про їх структуру, або кодових конструкцій, які апріорі можуть вважатися такими, що мають стохастичну природу їх утворення. У статті запропоновано метод структуризації кодових конструкцій з апріорі невідомою структурою на основі аналізу кореляційних зв’язків між кодовими конструкціями, які представляються у цьому методі гаусівською змішаною моделлю з подальшим виділенням її компонент та кластеризацією досліджуваних кодових конструкцій з використанням обґрунтованої у статті параметрично-критеріальної модифікації EM-алгоритму з видаленням компонент. Метод дозволяє виокремлювати групи кодових конструкції з взаємопов’язаними структурами і далі виділяти ці взаємопов’язані структури у явному вигляді, в чому може полягати розв’язання ряду задач лінійного криптоаналізу, які пов’язані з виявленням структур та взаємозв’язків між ними. Показано приклад реалізації запропонованого методу для структуризації бінарних псевдовипадкових послідовностей Баркера, які використовуються як сигнально-кодові конструкції у широкосмугових системах передавання інформації та для яких з літературних джерел відомо, що вони були синтезовані методом напрямленого перебору і тому мають стохастичний апріорі неструктурований характер.\",\"PeriodicalId\":378015,\"journal\":{\"name\":\"Ukrainian Information Security Research Journal\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Information Security Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18372/2410-7840.21.13765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Information Security Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18372/2410-7840.21.13765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method of structuring code constructions based on the Gaussian mixture model and separation of its components
Методи та підходи лінійного криптоаналізу криптографічних алгоритмів спрямовані на аналіз та виявлення взаємозв’язків між елементами відкритого тексту, шифротексту та ключа. У випадку лінійного криптоаналізу псевдовипадкових послідовностей та сигнально-кодових конструкцій, які побудовані на їх основі, аналізу та виявленню підлягають взаємозв’язки між елементами цих послідовностей та сигнально-кодових конструкцій, а також між їх внутрішніми структурами, їх складовими в утворюваних системах кодових конструкцій тощо. Ефективність реалізації лінійного криптоаналізу на різних його етапах може бути підвищена при структуризації (виявлення внутрішніх структур та взаємозв’язків між ними) досліджуваних кодових конструкцій, щодо яких у сторони здійснення криптоаналізу відсутня будь-яка апріорна інформація про їх структуру, або кодових конструкцій, які апріорі можуть вважатися такими, що мають стохастичну природу їх утворення. У статті запропоновано метод структуризації кодових конструкцій з апріорі невідомою структурою на основі аналізу кореляційних зв’язків між кодовими конструкціями, які представляються у цьому методі гаусівською змішаною моделлю з подальшим виділенням її компонент та кластеризацією досліджуваних кодових конструкцій з використанням обґрунтованої у статті параметрично-критеріальної модифікації EM-алгоритму з видаленням компонент. Метод дозволяє виокремлювати групи кодових конструкції з взаємопов’язаними структурами і далі виділяти ці взаємопов’язані структури у явному вигляді, в чому може полягати розв’язання ряду задач лінійного криптоаналізу, які пов’язані з виявленням структур та взаємозв’язків між ними. Показано приклад реалізації запропонованого методу для структуризації бінарних псевдовипадкових послідовностей Баркера, які використовуються як сигнально-кодові конструкції у широкосмугових системах передавання інформації та для яких з літературних джерел відомо, що вони були синтезовані методом напрямленого перебору і тому мають стохастичний апріорі неструктурований характер.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信