具有时变网格变形的非线性机电问题多谐公式的自动推导

A. Halbach, C. Geuzaine
{"title":"具有时变网格变形的非线性机电问题多谐公式的自动推导","authors":"A. Halbach, C. Geuzaine","doi":"10.1109/EUROSIME.2016.7463392","DOIUrl":null,"url":null,"abstract":"This paper describes a method to automatically derive multiharmonic finite element formulations for coupled, nonlinear electromechanical problems. It focuses on models of electrically actuated micromembranes using both a staggered and a monolithic Newton iteration scheme. Two- and three-dimensional examples highlight the main properties of the proposed method.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic derivation of multiharmonic formulations for nonlinear electromechanical problems with time dependent mesh deformation\",\"authors\":\"A. Halbach, C. Geuzaine\",\"doi\":\"10.1109/EUROSIME.2016.7463392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a method to automatically derive multiharmonic finite element formulations for coupled, nonlinear electromechanical problems. It focuses on models of electrically actuated micromembranes using both a staggered and a monolithic Newton iteration scheme. Two- and three-dimensional examples highlight the main properties of the proposed method.\",\"PeriodicalId\":438097,\"journal\":{\"name\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2016.7463392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了一种自动导出耦合非线性机电问题多谐有限元公式的方法。它着重于使用交错和单片牛顿迭代方案的电驱动微膜模型。二维和三维实例突出了所提方法的主要特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic derivation of multiharmonic formulations for nonlinear electromechanical problems with time dependent mesh deformation
This paper describes a method to automatically derive multiharmonic finite element formulations for coupled, nonlinear electromechanical problems. It focuses on models of electrically actuated micromembranes using both a staggered and a monolithic Newton iteration scheme. Two- and three-dimensional examples highlight the main properties of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信