移动机器人导航估计算法的比较

S. Guney, Murat Bilen
{"title":"移动机器人导航估计算法的比较","authors":"S. Guney, Murat Bilen","doi":"10.1109/SIU.2016.7495860","DOIUrl":null,"url":null,"abstract":"In this study, a robot with different maneuvras is followed with different estimation algorithms. The mobile robot has acted first linear, then maneuver and finally linear again. It's speed is constant through the way. Standard Kalman Filter, Adaptive Kalman Filter, Extended Kalman Filter and Interacting Multiple Model consist of multiple model Kalman Filter combined of linear and non-linear model are used to follow the act of the robot. The results of these estimations are compared with each other. Multiple model Kalman Filter is the best estimation algorithm among them for this motion model.","PeriodicalId":427250,"journal":{"name":"2016 24th Signal Processing and Communication Application Conference (SIU)","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The comparison of estimation algorithms for mobile robot navigation\",\"authors\":\"S. Guney, Murat Bilen\",\"doi\":\"10.1109/SIU.2016.7495860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a robot with different maneuvras is followed with different estimation algorithms. The mobile robot has acted first linear, then maneuver and finally linear again. It's speed is constant through the way. Standard Kalman Filter, Adaptive Kalman Filter, Extended Kalman Filter and Interacting Multiple Model consist of multiple model Kalman Filter combined of linear and non-linear model are used to follow the act of the robot. The results of these estimations are compared with each other. Multiple model Kalman Filter is the best estimation algorithm among them for this motion model.\",\"PeriodicalId\":427250,\"journal\":{\"name\":\"2016 24th Signal Processing and Communication Application Conference (SIU)\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th Signal Processing and Communication Application Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2016.7495860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Signal Processing and Communication Application Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2016.7495860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,针对不同机动动作的机器人,采用了不同的估计算法。移动机器人先是线性运动,然后是机动运动,最后又是线性运动。它的速度是恒定的。采用标准卡尔曼滤波器、自适应卡尔曼滤波器、扩展卡尔曼滤波器和由多模型组成的相互作用多模型卡尔曼滤波器对机器人的动作进行跟踪。对这些估计的结果进行了比较。其中,多模型卡尔曼滤波是对该运动模型最好的估计算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The comparison of estimation algorithms for mobile robot navigation
In this study, a robot with different maneuvras is followed with different estimation algorithms. The mobile robot has acted first linear, then maneuver and finally linear again. It's speed is constant through the way. Standard Kalman Filter, Adaptive Kalman Filter, Extended Kalman Filter and Interacting Multiple Model consist of multiple model Kalman Filter combined of linear and non-linear model are used to follow the act of the robot. The results of these estimations are compared with each other. Multiple model Kalman Filter is the best estimation algorithm among them for this motion model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信