Martin Wegener, Mika Paajanen, W. Wirges, R. Gerhard-Multhaupt
{"title":"电晕感应局部放电、内部电荷分离和细胞聚合物薄膜的机电换能器特性","authors":"Martin Wegener, Mika Paajanen, W. Wirges, R. Gerhard-Multhaupt","doi":"10.1109/ISE.2002.1042942","DOIUrl":null,"url":null,"abstract":"Recently, porous or cellular polymer films have received a lot of interest as materials for sensor and actuator applications. Films of cellular polypropylene have shown superior electromechanical thickness response when compared to conventional non-porous piezoelectric polymer materials. The electromechanical effect in cellular films originates from electrical discharges across internal gas-filled cells during preparation. The resulting charge separation is different from the charge-separation and dipole-orientation processes in non-cellular piezoelectric films. The aim of this work is to study the relationship between the partial discharges inside the cellular PP and its piezoelectric response. The focus is on the physical effects in the film at the threshold voltage that leads to a piezoelectric response. We studied the effects of charging voltage and charging time on partial discharges, surface potential and piezoelectric coefficient for a few cellular-film grades with different thicknesses. Also, the visible electroluminescence from numerous spots across the film surface during corona charging has been studied.","PeriodicalId":331115,"journal":{"name":"Proceedings. 11th International Symposium on Electrets","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Corona-induced partial discharges, internal charge separation and electromechanical transducer properties in cellular polymer films\",\"authors\":\"Martin Wegener, Mika Paajanen, W. Wirges, R. Gerhard-Multhaupt\",\"doi\":\"10.1109/ISE.2002.1042942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, porous or cellular polymer films have received a lot of interest as materials for sensor and actuator applications. Films of cellular polypropylene have shown superior electromechanical thickness response when compared to conventional non-porous piezoelectric polymer materials. The electromechanical effect in cellular films originates from electrical discharges across internal gas-filled cells during preparation. The resulting charge separation is different from the charge-separation and dipole-orientation processes in non-cellular piezoelectric films. The aim of this work is to study the relationship between the partial discharges inside the cellular PP and its piezoelectric response. The focus is on the physical effects in the film at the threshold voltage that leads to a piezoelectric response. We studied the effects of charging voltage and charging time on partial discharges, surface potential and piezoelectric coefficient for a few cellular-film grades with different thicknesses. Also, the visible electroluminescence from numerous spots across the film surface during corona charging has been studied.\",\"PeriodicalId\":331115,\"journal\":{\"name\":\"Proceedings. 11th International Symposium on Electrets\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 11th International Symposium on Electrets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISE.2002.1042942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 11th International Symposium on Electrets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISE.2002.1042942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Corona-induced partial discharges, internal charge separation and electromechanical transducer properties in cellular polymer films
Recently, porous or cellular polymer films have received a lot of interest as materials for sensor and actuator applications. Films of cellular polypropylene have shown superior electromechanical thickness response when compared to conventional non-porous piezoelectric polymer materials. The electromechanical effect in cellular films originates from electrical discharges across internal gas-filled cells during preparation. The resulting charge separation is different from the charge-separation and dipole-orientation processes in non-cellular piezoelectric films. The aim of this work is to study the relationship between the partial discharges inside the cellular PP and its piezoelectric response. The focus is on the physical effects in the film at the threshold voltage that leads to a piezoelectric response. We studied the effects of charging voltage and charging time on partial discharges, surface potential and piezoelectric coefficient for a few cellular-film grades with different thicknesses. Also, the visible electroluminescence from numerous spots across the film surface during corona charging has been studied.