多语言社交媒体信息整合中日益自动化的比较研究

Qixuan Hou, A. Musaev, Yang Yang, C. Pu
{"title":"多语言社交媒体信息整合中日益自动化的比较研究","authors":"Qixuan Hou, A. Musaev, Yang Yang, C. Pu","doi":"10.1109/CIC.2017.00049","DOIUrl":null,"url":null,"abstract":"Multilingual support in global applications that integrate and filter social media data is a significant challenge due to the cost of manually developing such social media filters for each language. Using LITMUS landslide information system as an experimental platform, we compared six design alternatives with varied combinations of manually developed filters and automatically translated filters for integrating and filtering social media data. Our experiments on Japanese tweets show that automatically translated filtering produces comparable or better results than manually created filters, achieving similar result quality: in false positives, false negatives, and F-1 scores. Compared to manual development, our results suggest automated translation may be a faster and cheaper approach to the integration of non-English languages, without sacrificing data quality. These results are encouraging for reducing the development cost of localized applications that integrate social media, by using automated translation tools.","PeriodicalId":156843,"journal":{"name":"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Comparative Study of Increasing Automation in the Integration of Multilingual Social Media Information\",\"authors\":\"Qixuan Hou, A. Musaev, Yang Yang, C. Pu\",\"doi\":\"10.1109/CIC.2017.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multilingual support in global applications that integrate and filter social media data is a significant challenge due to the cost of manually developing such social media filters for each language. Using LITMUS landslide information system as an experimental platform, we compared six design alternatives with varied combinations of manually developed filters and automatically translated filters for integrating and filtering social media data. Our experiments on Japanese tweets show that automatically translated filtering produces comparable or better results than manually created filters, achieving similar result quality: in false positives, false negatives, and F-1 scores. Compared to manual development, our results suggest automated translation may be a faster and cheaper approach to the integration of non-English languages, without sacrificing data quality. These results are encouraging for reducing the development cost of localized applications that integrate social media, by using automated translation tools.\",\"PeriodicalId\":156843,\"journal\":{\"name\":\"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.2017.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2017.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在集成和过滤社交媒体数据的全球应用程序中支持多语言是一项重大挑战,因为为每种语言手动开发此类社交媒体过滤器的成本很高。使用LITMUS滑坡信息系统作为实验平台,我们比较了六种设计方案,其中包括人工开发过滤器和自动翻译过滤器的不同组合,用于整合和过滤社交媒体数据。我们对日语推文的实验表明,与手动创建的过滤器相比,自动翻译过滤产生了相当或更好的结果,在假阳性、假阴性和F-1分数方面实现了相似的结果质量。与人工开发相比,我们的研究结果表明,在不牺牲数据质量的情况下,自动翻译可能是一种更快、更便宜的非英语语言集成方法。通过使用自动翻译工具,这些结果对于降低集成社交媒体的本地化应用程序的开发成本是令人鼓舞的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of Increasing Automation in the Integration of Multilingual Social Media Information
Multilingual support in global applications that integrate and filter social media data is a significant challenge due to the cost of manually developing such social media filters for each language. Using LITMUS landslide information system as an experimental platform, we compared six design alternatives with varied combinations of manually developed filters and automatically translated filters for integrating and filtering social media data. Our experiments on Japanese tweets show that automatically translated filtering produces comparable or better results than manually created filters, achieving similar result quality: in false positives, false negatives, and F-1 scores. Compared to manual development, our results suggest automated translation may be a faster and cheaper approach to the integration of non-English languages, without sacrificing data quality. These results are encouraging for reducing the development cost of localized applications that integrate social media, by using automated translation tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信