重新审视最大二保存字符串映射的参数化复杂度

Christian Komusiewicz, Mateus de Oliveira Oliveira, M. Zehavi
{"title":"重新审视最大二保存字符串映射的参数化复杂度","authors":"Christian Komusiewicz, Mateus de Oliveira Oliveira, M. Zehavi","doi":"10.4230/LIPIcs.CPM.2017.11","DOIUrl":null,"url":null,"abstract":"Abstract In the Maximum-Duo Preservation String Mapping ( Max-Duo PSM ) problem, the input consists of two related strings A and B of length n and a nonnegative integer k. The objective is to determine whether there exists a mapping m from the set of positions of A to the set of positions of B that maps only to positions with the same character and preserves at least k duos, which are pairs of adjacent positions. We develop a randomized algorithm that solves Max-Duo PSM in 4 k ⋅ n O ( 1 ) time, and a deterministic algorithm that solves this problem in 6.855 k ⋅ n O ( 1 ) time. The previous best known (deterministic) algorithm for this problem has ( 8 e ) 2 k + o ( k ) ⋅ n O ( 1 ) running time [Beretta et al. (2016) [1] , [2] ]. We also show that Max-Duo PSM admits a problem kernel of size O ( k 3 ) , improving upon the previous best known problem kernel of size O ( k 6 ) .","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Revisiting the Parameterized Complexity of Maximum-Duo Preservation String Mapping\",\"authors\":\"Christian Komusiewicz, Mateus de Oliveira Oliveira, M. Zehavi\",\"doi\":\"10.4230/LIPIcs.CPM.2017.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the Maximum-Duo Preservation String Mapping ( Max-Duo PSM ) problem, the input consists of two related strings A and B of length n and a nonnegative integer k. The objective is to determine whether there exists a mapping m from the set of positions of A to the set of positions of B that maps only to positions with the same character and preserves at least k duos, which are pairs of adjacent positions. We develop a randomized algorithm that solves Max-Duo PSM in 4 k ⋅ n O ( 1 ) time, and a deterministic algorithm that solves this problem in 6.855 k ⋅ n O ( 1 ) time. The previous best known (deterministic) algorithm for this problem has ( 8 e ) 2 k + o ( k ) ⋅ n O ( 1 ) running time [Beretta et al. (2016) [1] , [2] ]. We also show that Max-Duo PSM admits a problem kernel of size O ( k 3 ) , improving upon the previous best known problem kernel of size O ( k 6 ) .\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2017.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2017.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在Maximum-Duo Preservation String Mapping (Max-Duo PSM)问题中,输入由两个长度为n的相关字符串A和B和一个非负整数k组成,目的是确定是否存在从A的位置集合到B的位置集合的映射m,该映射m只映射到具有相同字符的位置,并且保留至少k对相邻位置对。我们开发了一个在4 k·n·O(1)时间内解决Max-Duo PSM问题的随机算法和一个在6.855 k·n·O(1)时间内解决该问题的确定性算法。之前最著名的(确定性)算法对于这个问题的运行时间为(8 e) 2k + o (k)⋅no (1) [Beretta et al.(2016)[1],[2]]。我们还证明了Max-Duo PSM允许一个大小为O (k3)的问题核,改进了之前最著名的大小为O (k6)的问题核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the Parameterized Complexity of Maximum-Duo Preservation String Mapping
Abstract In the Maximum-Duo Preservation String Mapping ( Max-Duo PSM ) problem, the input consists of two related strings A and B of length n and a nonnegative integer k. The objective is to determine whether there exists a mapping m from the set of positions of A to the set of positions of B that maps only to positions with the same character and preserves at least k duos, which are pairs of adjacent positions. We develop a randomized algorithm that solves Max-Duo PSM in 4 k ⋅ n O ( 1 ) time, and a deterministic algorithm that solves this problem in 6.855 k ⋅ n O ( 1 ) time. The previous best known (deterministic) algorithm for this problem has ( 8 e ) 2 k + o ( k ) ⋅ n O ( 1 ) running time [Beretta et al. (2016) [1] , [2] ]. We also show that Max-Duo PSM admits a problem kernel of size O ( k 3 ) , improving upon the previous best known problem kernel of size O ( k 6 ) .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信