多跳无线自组网中基于q学习的功率控制路由协议

Ke Wang, T. Chai, L. Wong
{"title":"多跳无线自组网中基于q学习的功率控制路由协议","authors":"Ke Wang, T. Chai, L. Wong","doi":"10.1109/ICON.2013.6781944","DOIUrl":null,"url":null,"abstract":"In wireless ad hoc networks, power control has great impact on routing since transmission range is directly determined by a node's transmission power. Higher power can give higher connectivity and shorter path. However, larger transmission range causes more interference to nearby neighbors and may further impair overall network performance. We propose a Q-Learning-based Power-Controlled Routing (QLPCR) protocol which makes use of Q learning techniques for routing and power control to optimize delay performance of the whole network. A Markov chain CSMA/CA delay model is used to estimate delay of each link in order to determine the optimal power level for all possible routing options.","PeriodicalId":219583,"journal":{"name":"2013 19th IEEE International Conference on Networks (ICON)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Q-Learning-based Power-Controlled Routing protocol in multihop wireless ad hoc network\",\"authors\":\"Ke Wang, T. Chai, L. Wong\",\"doi\":\"10.1109/ICON.2013.6781944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In wireless ad hoc networks, power control has great impact on routing since transmission range is directly determined by a node's transmission power. Higher power can give higher connectivity and shorter path. However, larger transmission range causes more interference to nearby neighbors and may further impair overall network performance. We propose a Q-Learning-based Power-Controlled Routing (QLPCR) protocol which makes use of Q learning techniques for routing and power control to optimize delay performance of the whole network. A Markov chain CSMA/CA delay model is used to estimate delay of each link in order to determine the optimal power level for all possible routing options.\",\"PeriodicalId\":219583,\"journal\":{\"name\":\"2013 19th IEEE International Conference on Networks (ICON)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 19th IEEE International Conference on Networks (ICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICON.2013.6781944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 19th IEEE International Conference on Networks (ICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICON.2013.6781944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在无线自组织网络中,功率控制对路由的影响很大,因为传输范围直接取决于节点的传输功率。更高的功率可以提供更高的连通性和更短的路径。但是,更大的传输距离会对附近的邻居造成更大的干扰,进而影响网络的整体性能。我们提出了一种基于Q学习的功率控制路由(QLPCR)协议,该协议利用Q学习技术进行路由和功率控制,以优化整个网络的延迟性能。采用马尔可夫链CSMA/CA延迟模型估计每条链路的延迟,以确定所有可能路由选项的最优功率水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Q-Learning-based Power-Controlled Routing protocol in multihop wireless ad hoc network
In wireless ad hoc networks, power control has great impact on routing since transmission range is directly determined by a node's transmission power. Higher power can give higher connectivity and shorter path. However, larger transmission range causes more interference to nearby neighbors and may further impair overall network performance. We propose a Q-Learning-based Power-Controlled Routing (QLPCR) protocol which makes use of Q learning techniques for routing and power control to optimize delay performance of the whole network. A Markov chain CSMA/CA delay model is used to estimate delay of each link in order to determine the optimal power level for all possible routing options.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信