Marija Selakovic, Mike Barnett, Madan Musuvathi, Todd Mytkowicz
{"title":"大数据系统中的跨语言优化:SCOPE的案例研究","authors":"Marija Selakovic, Mike Barnett, Madan Musuvathi, Todd Mytkowicz","doi":"10.1145/3183519.3183528","DOIUrl":null,"url":null,"abstract":"Building scalable big data programs currently requires programmers to combine relational (SQL) with non-relational code (Java, C#, Scala). Relational code is declarative - a program describes what the computation is and the compiler decides how to distribute the program. SQL query optimization has enjoyed a rich and fruitful history, however, most research and commercial optimization engines treat non-relational code as a black-box and thus are unable to optimize it. This paper empirically studies over 3 million SCOPE programs across five data centers within Microsoft and finds programs with non-relational code take between 45-70% of data center CPU time. We further explore the potential for SCOPE optimization by generating more native code from the non-relational part. Finally, we present 6 case studies showing that triggering more generation of native code in these jobs yields significant performance improvement: optimizing just one portion resulted in as much as 25% improvement for an entire program.","PeriodicalId":445513,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cross-Language Optimizations in Big Data Systems: A Case Study of SCOPE\",\"authors\":\"Marija Selakovic, Mike Barnett, Madan Musuvathi, Todd Mytkowicz\",\"doi\":\"10.1145/3183519.3183528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building scalable big data programs currently requires programmers to combine relational (SQL) with non-relational code (Java, C#, Scala). Relational code is declarative - a program describes what the computation is and the compiler decides how to distribute the program. SQL query optimization has enjoyed a rich and fruitful history, however, most research and commercial optimization engines treat non-relational code as a black-box and thus are unable to optimize it. This paper empirically studies over 3 million SCOPE programs across five data centers within Microsoft and finds programs with non-relational code take between 45-70% of data center CPU time. We further explore the potential for SCOPE optimization by generating more native code from the non-relational part. Finally, we present 6 case studies showing that triggering more generation of native code in these jobs yields significant performance improvement: optimizing just one portion resulted in as much as 25% improvement for an entire program.\",\"PeriodicalId\":445513,\"journal\":{\"name\":\"2018 IEEE/ACM 40th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 40th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183519.3183528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183519.3183528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross-Language Optimizations in Big Data Systems: A Case Study of SCOPE
Building scalable big data programs currently requires programmers to combine relational (SQL) with non-relational code (Java, C#, Scala). Relational code is declarative - a program describes what the computation is and the compiler decides how to distribute the program. SQL query optimization has enjoyed a rich and fruitful history, however, most research and commercial optimization engines treat non-relational code as a black-box and thus are unable to optimize it. This paper empirically studies over 3 million SCOPE programs across five data centers within Microsoft and finds programs with non-relational code take between 45-70% of data center CPU time. We further explore the potential for SCOPE optimization by generating more native code from the non-relational part. Finally, we present 6 case studies showing that triggering more generation of native code in these jobs yields significant performance improvement: optimizing just one portion resulted in as much as 25% improvement for an entire program.