$l^{2}\左(\mathbb{Z}\右)$上算子的协变和逆变符号

A. S. Elmabrok
{"title":"$l^{2}\\左(\\mathbb{Z}\\右)$上算子的协变和逆变符号","authors":"A. S. Elmabrok","doi":"10.33401/fujma.718157","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate covariant and contravariant symbols of operators generated by a representation of the integer group $\\mathbb{Z}$. Then we describe some properties (Existence, Uniquenes s, Boundedness, Compactnessi and Finite rank) of these operators and reformulated some know results in terms of wavelet transform (covariant and contravariant symbols). ","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariant and Contravariant Symbols of Operators on $l^{2}\\\\left(\\\\mathbb{Z}\\\\right)$\",\"authors\":\"A. S. Elmabrok\",\"doi\":\"10.33401/fujma.718157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate covariant and contravariant symbols of operators generated by a representation of the integer group $\\\\mathbb{Z}$. Then we describe some properties (Existence, Uniquenes s, Boundedness, Compactnessi and Finite rank) of these operators and reformulated some know results in terms of wavelet transform (covariant and contravariant symbols). \",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/fujma.718157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.718157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了整数群$\mathbb{Z}$的表示所产生的算子的协变和逆变符号。然后我们描述了这些算子的一些性质(存在性、唯一性、有界性、紧性和有限秩),并用小波变换(协变符号和逆变符号)重新表述了一些已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covariant and Contravariant Symbols of Operators on $l^{2}\left(\mathbb{Z}\right)$
In this paper, we investigate covariant and contravariant symbols of operators generated by a representation of the integer group $\mathbb{Z}$. Then we describe some properties (Existence, Uniquenes s, Boundedness, Compactnessi and Finite rank) of these operators and reformulated some know results in terms of wavelet transform (covariant and contravariant symbols). 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信