基于成本的作业调度策略提高数据网格的性能

N. Mansouri
{"title":"基于成本的作业调度策略提高数据网格的性能","authors":"N. Mansouri","doi":"10.18495/COMENGAPP.V3I2.52","DOIUrl":null,"url":null,"abstract":"Grid environments have gain tremendous importance in recent years since application requirements increased drastically. The heterogeneity and geographic dispersion of grid resources and applications places some complex problems such as job scheduling. Most existing scheduling strategies in Grids only focus on one kind of Grid jobs which can be data-intensive or computation-intensive. However, only considering one kind of jobs in scheduling does not result in suitable scheduling in the viewpoint of all system, and sometimes causes wasting of resources on the other side. To address the challenge of simultaneously considering both kinds of jobs, a new Cost-Based Job Scheduling (CJS) strategy is proposed in this paper. At one hand, CJS algorithm considers both data and computational resource availability of the network, and on the other hand, considering the corresponding requirements of each job, it determines a value called W to the job. Using the W value, the importance of two aspects (being data or computation intensive) for each job is determined, and then the job is assigned to the available resources. The simulation results with OptorSim show that CJS outperforms comparing to the existing algorithms mentioned in literature as number of jobs increases.","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improve the Performance of Data Grids by Cost-Based Job Scheduling Strategy\",\"authors\":\"N. Mansouri\",\"doi\":\"10.18495/COMENGAPP.V3I2.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grid environments have gain tremendous importance in recent years since application requirements increased drastically. The heterogeneity and geographic dispersion of grid resources and applications places some complex problems such as job scheduling. Most existing scheduling strategies in Grids only focus on one kind of Grid jobs which can be data-intensive or computation-intensive. However, only considering one kind of jobs in scheduling does not result in suitable scheduling in the viewpoint of all system, and sometimes causes wasting of resources on the other side. To address the challenge of simultaneously considering both kinds of jobs, a new Cost-Based Job Scheduling (CJS) strategy is proposed in this paper. At one hand, CJS algorithm considers both data and computational resource availability of the network, and on the other hand, considering the corresponding requirements of each job, it determines a value called W to the job. Using the W value, the importance of two aspects (being data or computation intensive) for each job is determined, and then the job is assigned to the available resources. The simulation results with OptorSim show that CJS outperforms comparing to the existing algorithms mentioned in literature as number of jobs increases.\",\"PeriodicalId\":120500,\"journal\":{\"name\":\"Computer Engineering and Applications\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Engineering and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18495/COMENGAPP.V3I2.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18495/COMENGAPP.V3I2.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,由于应用程序需求急剧增加,网格环境变得非常重要。网格资源和应用程序的异构性和地理分散性带来了作业调度等复杂问题。大多数网格调度策略只关注一类网格作业,这些作业可能是数据密集型的,也可能是计算密集型的。然而,在调度中只考虑一类作业并不能从整个系统的角度得到合适的调度结果,有时还会造成另一方资源的浪费。为了解决同时考虑两种作业的挑战,本文提出了一种新的基于成本的作业调度策略。CJS算法一方面考虑网络数据和计算资源的可用性,另一方面考虑每个作业对应的需求,为作业确定一个W的值。使用W值,确定每个作业的两个方面(数据密集型或计算密集型)的重要性,然后将该作业分配给可用资源。OptorSim的仿真结果表明,随着作业数量的增加,CJS的性能优于文献中提到的现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improve the Performance of Data Grids by Cost-Based Job Scheduling Strategy
Grid environments have gain tremendous importance in recent years since application requirements increased drastically. The heterogeneity and geographic dispersion of grid resources and applications places some complex problems such as job scheduling. Most existing scheduling strategies in Grids only focus on one kind of Grid jobs which can be data-intensive or computation-intensive. However, only considering one kind of jobs in scheduling does not result in suitable scheduling in the viewpoint of all system, and sometimes causes wasting of resources on the other side. To address the challenge of simultaneously considering both kinds of jobs, a new Cost-Based Job Scheduling (CJS) strategy is proposed in this paper. At one hand, CJS algorithm considers both data and computational resource availability of the network, and on the other hand, considering the corresponding requirements of each job, it determines a value called W to the job. Using the W value, the importance of two aspects (being data or computation intensive) for each job is determined, and then the job is assigned to the available resources. The simulation results with OptorSim show that CJS outperforms comparing to the existing algorithms mentioned in literature as number of jobs increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信