F. Alonso-Fernandez, M. Fairhurst, Julian Fierrez, J. Ortega-Garcia
{"title":"离线签名性能预测的自动度量方法","authors":"F. Alonso-Fernandez, M. Fairhurst, Julian Fierrez, J. Ortega-Garcia","doi":"10.1109/ICIP.2007.4378968","DOIUrl":null,"url":null,"abstract":"Performance in terms of accuracy is one of the most important goal of a biometric system. Hence, having a measure which is able to predict the performance with respect to a particular sample of interest is specially useful, and can be exploited in a number of ways. In this paper, we present two automatic measures for predicting the performance in off-line signature verification. Results obtained on a sub-corpus of the MCYT signature database confirms a relationship between the proposed measures and system error rates measured in terms of equal error rate (EER), false acceptance rate (FAR) and false rejection rate (FRR).","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Automatic Measures for Predicting Performance in Off-Line Signature\",\"authors\":\"F. Alonso-Fernandez, M. Fairhurst, Julian Fierrez, J. Ortega-Garcia\",\"doi\":\"10.1109/ICIP.2007.4378968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance in terms of accuracy is one of the most important goal of a biometric system. Hence, having a measure which is able to predict the performance with respect to a particular sample of interest is specially useful, and can be exploited in a number of ways. In this paper, we present two automatic measures for predicting the performance in off-line signature verification. Results obtained on a sub-corpus of the MCYT signature database confirms a relationship between the proposed measures and system error rates measured in terms of equal error rate (EER), false acceptance rate (FAR) and false rejection rate (FRR).\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4378968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4378968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Measures for Predicting Performance in Off-Line Signature
Performance in terms of accuracy is one of the most important goal of a biometric system. Hence, having a measure which is able to predict the performance with respect to a particular sample of interest is specially useful, and can be exploited in a number of ways. In this paper, we present two automatic measures for predicting the performance in off-line signature verification. Results obtained on a sub-corpus of the MCYT signature database confirms a relationship between the proposed measures and system error rates measured in terms of equal error rate (EER), false acceptance rate (FAR) and false rejection rate (FRR).