基于sigmoid的盲均衡器算法分析

Stephan Meyer
{"title":"基于sigmoid的盲均衡器算法分析","authors":"Stephan Meyer","doi":"10.1109/CSNDSP.2016.7573991","DOIUrl":null,"url":null,"abstract":"This Paper presents sigmoid-based modified decision-directed algorithm (MDDA) and modified decision-directed modulus algorithm (MDDMA) to optimize the algorithm behavior within a real-time environment. Using the sigmoid function instead of the signum function for this group of algorithms leads to a decreasing of the equalizer length, enhancement of the step size parameter (μ), optimization of the bit error rate (BER) and to a reduction of the mean square error (MSE). Applying a sigmoid function results in a nonlinear soft decision of the equalizer output compared to the signum function which represents a nonlinear hard decision. Additional to the simulation results, both algorithms are process-optimized for real-time baseband transmission in a digital signal processor (DSP) test-bed for differential modulations schemes. All presented BER simulation results are supported by BER measurements achieved with the laboratory test-bed. The character of the sigmoid-based nonlinearity can be described as a loupe function to increase the operating range of a blind equalizer for fixed step-size parameter.","PeriodicalId":298711,"journal":{"name":"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of sigmoid-based blind equalizer algorithms\",\"authors\":\"Stephan Meyer\",\"doi\":\"10.1109/CSNDSP.2016.7573991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This Paper presents sigmoid-based modified decision-directed algorithm (MDDA) and modified decision-directed modulus algorithm (MDDMA) to optimize the algorithm behavior within a real-time environment. Using the sigmoid function instead of the signum function for this group of algorithms leads to a decreasing of the equalizer length, enhancement of the step size parameter (μ), optimization of the bit error rate (BER) and to a reduction of the mean square error (MSE). Applying a sigmoid function results in a nonlinear soft decision of the equalizer output compared to the signum function which represents a nonlinear hard decision. Additional to the simulation results, both algorithms are process-optimized for real-time baseband transmission in a digital signal processor (DSP) test-bed for differential modulations schemes. All presented BER simulation results are supported by BER measurements achieved with the laboratory test-bed. The character of the sigmoid-based nonlinearity can be described as a loupe function to increase the operating range of a blind equalizer for fixed step-size parameter.\",\"PeriodicalId\":298711,\"journal\":{\"name\":\"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNDSP.2016.7573991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP.2016.7573991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了优化算法在实时环境下的性能,本文提出了基于sigmoid的改进决策导向算法(MDDA)和改进决策导向模算法(MDDMA)。采用sigmoid函数代替sgum函数,可以减小均衡器长度,提高步长参数μ,优化误码率,降低均方误差。应用sigmoid函数会导致均衡器输出的非线性软判决,而sgum函数则代表非线性硬判决。除了仿真结果之外,这两种算法都在差分调制方案的数字信号处理器(DSP)试验台中进行了实时基带传输的过程优化。所有的误码率模拟结果都得到了实验室测试平台的误码率测量结果的支持。对于固定步长参数的盲均衡器,基于s型的非线性特性可以被描述为增大其工作范围的loupe函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of sigmoid-based blind equalizer algorithms
This Paper presents sigmoid-based modified decision-directed algorithm (MDDA) and modified decision-directed modulus algorithm (MDDMA) to optimize the algorithm behavior within a real-time environment. Using the sigmoid function instead of the signum function for this group of algorithms leads to a decreasing of the equalizer length, enhancement of the step size parameter (μ), optimization of the bit error rate (BER) and to a reduction of the mean square error (MSE). Applying a sigmoid function results in a nonlinear soft decision of the equalizer output compared to the signum function which represents a nonlinear hard decision. Additional to the simulation results, both algorithms are process-optimized for real-time baseband transmission in a digital signal processor (DSP) test-bed for differential modulations schemes. All presented BER simulation results are supported by BER measurements achieved with the laboratory test-bed. The character of the sigmoid-based nonlinearity can be described as a loupe function to increase the operating range of a blind equalizer for fixed step-size parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信