从光谱图像自动语言识别

Aizada Kaiyr, S. Kadyrov, A. Bogdanchikov
{"title":"从光谱图像自动语言识别","authors":"Aizada Kaiyr, S. Kadyrov, A. Bogdanchikov","doi":"10.1109/SIST50301.2021.9465996","DOIUrl":null,"url":null,"abstract":"The main idea of the work is to apply CNN and LSTM algorithms on the preprocessed audio data converted to spectrograms. In the experiment 7 languages are used English, Kazakh, French, German, Italian, Russian and Spanish to test that algorithm which show over 99% training accuracy and the maximum of 94.28% accuracy on the test set. In the end there is a discussion of the 100% of classification of the Kazakh language and the possible influences of dataset on the result.","PeriodicalId":318915,"journal":{"name":"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Language Identification from Spectorgam Images\",\"authors\":\"Aizada Kaiyr, S. Kadyrov, A. Bogdanchikov\",\"doi\":\"10.1109/SIST50301.2021.9465996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main idea of the work is to apply CNN and LSTM algorithms on the preprocessed audio data converted to spectrograms. In the experiment 7 languages are used English, Kazakh, French, German, Italian, Russian and Spanish to test that algorithm which show over 99% training accuracy and the maximum of 94.28% accuracy on the test set. In the end there is a discussion of the 100% of classification of the Kazakh language and the possible influences of dataset on the result.\",\"PeriodicalId\":318915,\"journal\":{\"name\":\"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIST50301.2021.9465996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST50301.2021.9465996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

该工作的主要思想是将CNN和LSTM算法应用于预处理后的音频数据转换为频谱图。实验中使用英语、哈萨克语、法语、德语、意大利语、俄语和西班牙语等7种语言对算法进行测试,训练准确率超过99%,在测试集上准确率最高达到94.28%。最后讨论了哈萨克语分类的100%正确率以及数据集对分类结果可能产生的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Language Identification from Spectorgam Images
The main idea of the work is to apply CNN and LSTM algorithms on the preprocessed audio data converted to spectrograms. In the experiment 7 languages are used English, Kazakh, French, German, Italian, Russian and Spanish to test that algorithm which show over 99% training accuracy and the maximum of 94.28% accuracy on the test set. In the end there is a discussion of the 100% of classification of the Kazakh language and the possible influences of dataset on the result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信