Ahmet Turan Erozan, M. Golanbari, R. Bishnoi, J. Aghassi‐Hagmann, M. Tahoori
{"title":"无机印刷电子器件物理不可克隆功能的设计与评价","authors":"Ahmet Turan Erozan, M. Golanbari, R. Bishnoi, J. Aghassi‐Hagmann, M. Tahoori","doi":"10.1109/ISQED.2018.8357323","DOIUrl":null,"url":null,"abstract":"Printed Electronics (PE) is a promising technology that provides mechanical flexibility and low-cost fabrication. These features make PE the key enabler for emerging applications, such as smart sensors, wearables, and Internet of Things (IoTs). Since these applications need secure communication and/or authentication, it is vital to utilize security primitives for cryptographic key and identification. Physical Unclonable Functions (PUF) have been adopted widely to provide the secure keys. In this work, we present a weak PUF based on Electrolyte-gated FETs using inorganic inkjet printed electronics. A comprehensive analysis framework including Monte Carlo simulations based on real device measurements is developed to evaluate the proposed PE-PUF. Moreover, a multi-bit PE-PUF design is proposed to optimize area usage. The analysis results show that the PE-PUF has ideal uniqueness, good reliability, and can operates at low voltage which is critical for low-power PE applications. In addition, the proposed multi-bit PE-PUF reduces the area usage around 30%.","PeriodicalId":213351,"journal":{"name":"2018 19th International Symposium on Quality Electronic Design (ISQED)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Design and evaluation of physical unclonable function for inorganic printed electronics\",\"authors\":\"Ahmet Turan Erozan, M. Golanbari, R. Bishnoi, J. Aghassi‐Hagmann, M. Tahoori\",\"doi\":\"10.1109/ISQED.2018.8357323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Printed Electronics (PE) is a promising technology that provides mechanical flexibility and low-cost fabrication. These features make PE the key enabler for emerging applications, such as smart sensors, wearables, and Internet of Things (IoTs). Since these applications need secure communication and/or authentication, it is vital to utilize security primitives for cryptographic key and identification. Physical Unclonable Functions (PUF) have been adopted widely to provide the secure keys. In this work, we present a weak PUF based on Electrolyte-gated FETs using inorganic inkjet printed electronics. A comprehensive analysis framework including Monte Carlo simulations based on real device measurements is developed to evaluate the proposed PE-PUF. Moreover, a multi-bit PE-PUF design is proposed to optimize area usage. The analysis results show that the PE-PUF has ideal uniqueness, good reliability, and can operates at low voltage which is critical for low-power PE applications. In addition, the proposed multi-bit PE-PUF reduces the area usage around 30%.\",\"PeriodicalId\":213351,\"journal\":{\"name\":\"2018 19th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2018.8357323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2018.8357323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and evaluation of physical unclonable function for inorganic printed electronics
Printed Electronics (PE) is a promising technology that provides mechanical flexibility and low-cost fabrication. These features make PE the key enabler for emerging applications, such as smart sensors, wearables, and Internet of Things (IoTs). Since these applications need secure communication and/or authentication, it is vital to utilize security primitives for cryptographic key and identification. Physical Unclonable Functions (PUF) have been adopted widely to provide the secure keys. In this work, we present a weak PUF based on Electrolyte-gated FETs using inorganic inkjet printed electronics. A comprehensive analysis framework including Monte Carlo simulations based on real device measurements is developed to evaluate the proposed PE-PUF. Moreover, a multi-bit PE-PUF design is proposed to optimize area usage. The analysis results show that the PE-PUF has ideal uniqueness, good reliability, and can operates at low voltage which is critical for low-power PE applications. In addition, the proposed multi-bit PE-PUF reduces the area usage around 30%.