CEC-2013单目标连续优化试验台的差分演化

A. K. Qin, Xiaodong Li
{"title":"CEC-2013单目标连续优化试验台的差分演化","authors":"A. K. Qin, Xiaodong Li","doi":"10.1109/CEC.2013.6557689","DOIUrl":null,"url":null,"abstract":"Differential evolution (DE) is one of the most powerful continuous optimizers in the field of evolutionary computation. This work systematically benchmarks a classic DE algorithm (DE/rand/1/bin) on the CEC-2013 single-objective continuous optimization testbed. We report, for each test function at different problem dimensionality, the best achieved performance among a wide range of potentially effective parameter settings. It reflects the intrinsic optimization capability of DE/rand/1/bin on this testbed and can serve as a baseline for performance comparison in future research using this testbed. Furthermore, we conduct parameter sensitivity analysis using advanced non-parametric statistical tests to discover statistically significantly superior parameter settings. This analysis provides a statistically reliable rule of thumb for choosing the parameters of DE/rand/1/bin to solve unseen problems. Moreover, we report the performance of DE/rand/1/bin using one superior parameter setting advocated by parameter sensitivity analysis.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"405 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Differential evolution on the CEC-2013 single-objective continuous optimization testbed\",\"authors\":\"A. K. Qin, Xiaodong Li\",\"doi\":\"10.1109/CEC.2013.6557689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential evolution (DE) is one of the most powerful continuous optimizers in the field of evolutionary computation. This work systematically benchmarks a classic DE algorithm (DE/rand/1/bin) on the CEC-2013 single-objective continuous optimization testbed. We report, for each test function at different problem dimensionality, the best achieved performance among a wide range of potentially effective parameter settings. It reflects the intrinsic optimization capability of DE/rand/1/bin on this testbed and can serve as a baseline for performance comparison in future research using this testbed. Furthermore, we conduct parameter sensitivity analysis using advanced non-parametric statistical tests to discover statistically significantly superior parameter settings. This analysis provides a statistically reliable rule of thumb for choosing the parameters of DE/rand/1/bin to solve unseen problems. Moreover, we report the performance of DE/rand/1/bin using one superior parameter setting advocated by parameter sensitivity analysis.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"405 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

差分进化算法是进化计算领域中最强大的连续优化算法之一。本文在CEC-2013单目标连续优化试验台上对经典DE算法(DE/rand/1/bin)进行了系统的基准测试。我们报告,对于不同问题维度的每个测试函数,在广泛的潜在有效参数设置中实现了最佳性能。它反映了该试验台上DE/rand/1/bin的内在优化能力,可以作为未来使用该试验台进行研究时性能比较的基准。此外,我们使用先进的非参数统计测试进行参数敏感性分析,以发现统计上显着优越的参数设置。这种分析为选择DE/rand/1/bin的参数来解决看不见的问题提供了统计上可靠的经验法则。此外,我们报告了DE/rand/1/bin的性能,采用了参数敏感性分析所提倡的一种优越的参数设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential evolution on the CEC-2013 single-objective continuous optimization testbed
Differential evolution (DE) is one of the most powerful continuous optimizers in the field of evolutionary computation. This work systematically benchmarks a classic DE algorithm (DE/rand/1/bin) on the CEC-2013 single-objective continuous optimization testbed. We report, for each test function at different problem dimensionality, the best achieved performance among a wide range of potentially effective parameter settings. It reflects the intrinsic optimization capability of DE/rand/1/bin on this testbed and can serve as a baseline for performance comparison in future research using this testbed. Furthermore, we conduct parameter sensitivity analysis using advanced non-parametric statistical tests to discover statistically significantly superior parameter settings. This analysis provides a statistically reliable rule of thumb for choosing the parameters of DE/rand/1/bin to solve unseen problems. Moreover, we report the performance of DE/rand/1/bin using one superior parameter setting advocated by parameter sensitivity analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信