外监督前馈神经网络零代价学习的条件

De-shuang Huang
{"title":"外监督前馈神经网络零代价学习的条件","authors":"De-shuang Huang","doi":"10.1109/IJCNN.1999.831061","DOIUrl":null,"url":null,"abstract":"This paper investigates, from the viewpoint of linear algebra, the local minima of least square error cost functions defined at the outputs of outer-supervised feedforward neural networks (FNN). For a specific case, we also show that those spacedly colinear samples (probably output by the final hidden layer) will be easily separated with null-cost error function even if the condition M/spl ges/N is not satisfied. In the light of these conclusions we shall give a general method for designing a suitable architecture network to solve a specific problem.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the conditions of outer-supervised feedforward neural networks for null cost learning\",\"authors\":\"De-shuang Huang\",\"doi\":\"10.1109/IJCNN.1999.831061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates, from the viewpoint of linear algebra, the local minima of least square error cost functions defined at the outputs of outer-supervised feedforward neural networks (FNN). For a specific case, we also show that those spacedly colinear samples (probably output by the final hidden layer) will be easily separated with null-cost error function even if the condition M/spl ges/N is not satisfied. In the light of these conclusions we shall give a general method for designing a suitable architecture network to solve a specific problem.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.831061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.831061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文从线性代数的角度研究了外监督前馈神经网络(FNN)输出处最小二乘误差代价函数的局部极小值。对于一个具体的例子,我们也证明了即使条件M/spl ges/N不满足,那些间隔共线性的样本(可能由最终隐藏层输出)也很容易与零代价误差函数分离。根据这些结论,我们将给出一种设计合适的体系结构网络来解决具体问题的一般方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the conditions of outer-supervised feedforward neural networks for null cost learning
This paper investigates, from the viewpoint of linear algebra, the local minima of least square error cost functions defined at the outputs of outer-supervised feedforward neural networks (FNN). For a specific case, we also show that those spacedly colinear samples (probably output by the final hidden layer) will be easily separated with null-cost error function even if the condition M/spl ges/N is not satisfied. In the light of these conclusions we shall give a general method for designing a suitable architecture network to solve a specific problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信