阿拉伯命名实体识别:什么是有效的,下一步是什么

Liyuan Liu, Jingbo Shang, Jiawei Han
{"title":"阿拉伯命名实体识别:什么是有效的,下一步是什么","authors":"Liyuan Liu, Jingbo Shang, Jiawei Han","doi":"10.18653/v1/W19-4607","DOIUrl":null,"url":null,"abstract":"This paper presents the winning solution to the Arabic Named Entity Recognition challenge run by Topcoder.com. The proposed model integrates various tailored techniques together, including representation learning, feature engineering, sequence labeling, and ensemble learning. The final model achieves a test F_1 score of 75.82% on the AQMAR dataset and outperforms baselines by a large margin. Detailed analyses are conducted to reveal both its strengths and limitations. Specifically, we observe that (1) representation learning modules can significantly boost the performance but requires a proper pre-processing and (2) the resulting embedding can be further enhanced with feature engineering due to the limited size of the training data. All implementations and pre-trained models are made public.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Arabic Named Entity Recognition: What Works and What’s Next\",\"authors\":\"Liyuan Liu, Jingbo Shang, Jiawei Han\",\"doi\":\"10.18653/v1/W19-4607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the winning solution to the Arabic Named Entity Recognition challenge run by Topcoder.com. The proposed model integrates various tailored techniques together, including representation learning, feature engineering, sequence labeling, and ensemble learning. The final model achieves a test F_1 score of 75.82% on the AQMAR dataset and outperforms baselines by a large margin. Detailed analyses are conducted to reveal both its strengths and limitations. Specifically, we observe that (1) representation learning modules can significantly boost the performance but requires a proper pre-processing and (2) the resulting embedding can be further enhanced with feature engineering due to the limited size of the training data. All implementations and pre-trained models are made public.\",\"PeriodicalId\":268163,\"journal\":{\"name\":\"WANLP@ACL 2019\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WANLP@ACL 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-4607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了由Topcoder.com举办的阿拉伯语命名实体识别挑战赛的获胜方案。所提出的模型集成了各种定制技术,包括表示学习、特征工程、序列标记和集成学习。最终模型在AQMAR数据集上的测试F_1得分为75.82%,大大优于基线。并进行了详细的分析,以揭示其优势和局限性。具体来说,我们观察到(1)表示学习模块可以显著提高性能,但需要适当的预处理;(2)由于训练数据的大小有限,结果嵌入可以通过特征工程进一步增强。所有的实现和预训练模型都是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arabic Named Entity Recognition: What Works and What’s Next
This paper presents the winning solution to the Arabic Named Entity Recognition challenge run by Topcoder.com. The proposed model integrates various tailored techniques together, including representation learning, feature engineering, sequence labeling, and ensemble learning. The final model achieves a test F_1 score of 75.82% on the AQMAR dataset and outperforms baselines by a large margin. Detailed analyses are conducted to reveal both its strengths and limitations. Specifically, we observe that (1) representation learning modules can significantly boost the performance but requires a proper pre-processing and (2) the resulting embedding can be further enhanced with feature engineering due to the limited size of the training data. All implementations and pre-trained models are made public.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信