基于弱监督二维点集配准的语义匹配

Zakaria Laskar, H. R. Tavakoli, Juho Kannala
{"title":"基于弱监督二维点集配准的语义匹配","authors":"Zakaria Laskar, H. R. Tavakoli, Juho Kannala","doi":"10.1109/WACV.2019.00118","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of establishing correspondences between different instances of the same object. The problem is posed as finding the geometric transformation that aligns a given image pair. We use a convolutional neural network (CNN) to directly regress the parameters of the transformation model. The alignment problem is defined in the setting where an unordered set of semantic key-points per image are available, but, without the correspondence information. To this end we propose a novel loss function based on cyclic consistency that solves this 2D point set registration problem by inferring the optimal geometric transformation model parameters. We train and test our approach on a standard benchmark dataset Proposal-Flow (PF-PASCAL). The proposed approach achieves state-of-the-art results demonstrating the effectiveness of the method. In addition, we show our approach further benefits from additional training samples in PF-PASCAL generated by using category level information.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Semantic Matching by Weakly Supervised 2D Point Set Registration\",\"authors\":\"Zakaria Laskar, H. R. Tavakoli, Juho Kannala\",\"doi\":\"10.1109/WACV.2019.00118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address the problem of establishing correspondences between different instances of the same object. The problem is posed as finding the geometric transformation that aligns a given image pair. We use a convolutional neural network (CNN) to directly regress the parameters of the transformation model. The alignment problem is defined in the setting where an unordered set of semantic key-points per image are available, but, without the correspondence information. To this end we propose a novel loss function based on cyclic consistency that solves this 2D point set registration problem by inferring the optimal geometric transformation model parameters. We train and test our approach on a standard benchmark dataset Proposal-Flow (PF-PASCAL). The proposed approach achieves state-of-the-art results demonstrating the effectiveness of the method. In addition, we show our approach further benefits from additional training samples in PF-PASCAL generated by using category level information.\",\"PeriodicalId\":436637,\"journal\":{\"name\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2019.00118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文讨论了在同一对象的不同实例之间建立对应关系的问题。这个问题被提出为寻找对齐给定图像对的几何变换。我们使用卷积神经网络(CNN)直接回归变换模型的参数。对齐问题是在这样的情况下定义的:每个图像都有一组无序的语义关键点,但是没有对应的信息。为此,我们提出了一种新的基于循环一致性的损失函数,通过推断最优几何变换模型参数来解决二维点集配准问题。我们在一个标准基准数据集Proposal-Flow (PF-PASCAL)上训练和测试了我们的方法。所提出的方法达到了最先进的结果,证明了该方法的有效性。此外,我们还展示了我们的方法从使用类别级别信息生成的PF-PASCAL中额外的训练样本中获得的进一步好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Matching by Weakly Supervised 2D Point Set Registration
In this paper we address the problem of establishing correspondences between different instances of the same object. The problem is posed as finding the geometric transformation that aligns a given image pair. We use a convolutional neural network (CNN) to directly regress the parameters of the transformation model. The alignment problem is defined in the setting where an unordered set of semantic key-points per image are available, but, without the correspondence information. To this end we propose a novel loss function based on cyclic consistency that solves this 2D point set registration problem by inferring the optimal geometric transformation model parameters. We train and test our approach on a standard benchmark dataset Proposal-Flow (PF-PASCAL). The proposed approach achieves state-of-the-art results demonstrating the effectiveness of the method. In addition, we show our approach further benefits from additional training samples in PF-PASCAL generated by using category level information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信