偿还元数据债务:使用主题模型学习概念的表示

Jiahao Chen, M. Veloso
{"title":"偿还元数据债务:使用主题模型学习概念的表示","authors":"Jiahao Chen, M. Veloso","doi":"10.1145/3383455.3422537","DOIUrl":null,"url":null,"abstract":"We introduce a data management problem called metadata debt, to identify the mapping between data concepts and their logical representations. We describe how this mapping can be learned using semisupervised topic models based on low-rank matrix factorizations that account for missing and noisy labels, coupled with sparsity penalties to improve localization and interpretability. We introduce a gauge transformation approach that allows us to construct explicit associations between topics and concept labels, and thus assign meaning to topics. We also show how to use this topic model for semisupervised learning tasks like extrapolating from known labels, evaluating possible errors in existing labels, and predicting missing features. We show results from this topic model in predicting subject tags on over 25,000 datasets from Kaggle.com, demonstrating the ability to learn semantically meaningful features.","PeriodicalId":447950,"journal":{"name":"Proceedings of the First ACM International Conference on AI in Finance","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Paying down metadata debt: learning the representation of concepts using topic models\",\"authors\":\"Jiahao Chen, M. Veloso\",\"doi\":\"10.1145/3383455.3422537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a data management problem called metadata debt, to identify the mapping between data concepts and their logical representations. We describe how this mapping can be learned using semisupervised topic models based on low-rank matrix factorizations that account for missing and noisy labels, coupled with sparsity penalties to improve localization and interpretability. We introduce a gauge transformation approach that allows us to construct explicit associations between topics and concept labels, and thus assign meaning to topics. We also show how to use this topic model for semisupervised learning tasks like extrapolating from known labels, evaluating possible errors in existing labels, and predicting missing features. We show results from this topic model in predicting subject tags on over 25,000 datasets from Kaggle.com, demonstrating the ability to learn semantically meaningful features.\",\"PeriodicalId\":447950,\"journal\":{\"name\":\"Proceedings of the First ACM International Conference on AI in Finance\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First ACM International Conference on AI in Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3383455.3422537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3383455.3422537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们引入了一个称为元数据债务的数据管理问题,以确定数据概念及其逻辑表示之间的映射。我们描述了如何使用基于低秩矩阵分解的半监督主题模型来学习这种映射,该模型考虑了缺失和噪声标签,并结合稀疏性惩罚来提高定位和可解释性。我们引入了一种规范转换方法,它允许我们在主题和概念标签之间构建明确的关联,从而为主题分配意义。我们还展示了如何将该主题模型用于半监督学习任务,如从已知标签推断,评估现有标签中的可能错误以及预测缺失特征。我们展示了这个主题模型在Kaggle.com上超过25000个数据集上预测主题标签的结果,展示了学习语义上有意义的特征的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Paying down metadata debt: learning the representation of concepts using topic models
We introduce a data management problem called metadata debt, to identify the mapping between data concepts and their logical representations. We describe how this mapping can be learned using semisupervised topic models based on low-rank matrix factorizations that account for missing and noisy labels, coupled with sparsity penalties to improve localization and interpretability. We introduce a gauge transformation approach that allows us to construct explicit associations between topics and concept labels, and thus assign meaning to topics. We also show how to use this topic model for semisupervised learning tasks like extrapolating from known labels, evaluating possible errors in existing labels, and predicting missing features. We show results from this topic model in predicting subject tags on over 25,000 datasets from Kaggle.com, demonstrating the ability to learn semantically meaningful features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信