离散前向后模糊预测控制

S. García-Nieto, J. V. Salcedo, D. Laurí, Miguel A. Martínez
{"title":"离散前向后模糊预测控制","authors":"S. García-Nieto, J. V. Salcedo, D. Laurí, Miguel A. Martínez","doi":"10.1109/CCA.2009.5280702","DOIUrl":null,"url":null,"abstract":"An extension of the model predictive control philosophy to the field of fuzzy control design is discussed. The main goal is to bring together the best features from both techniques. The basic idea is to divide the initial optimization problem in a set of recursive optimization subproblems or decision stages. Each subproblem is raised as a fuzzy LQR design where the goal is to define the set of feedback gains of a fuzzy Parallel Distributed Compensator (PDC) that minimizes the function cost using Linear Matrix Inequalities (LMIs). Therefore, the global controller is a set of PDC controllers that satisfies the Bellman optimality principle, minimizing the cost function both locally and globally, and guarantees stability and satisfies the control action constraints.","PeriodicalId":294950,"journal":{"name":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete Forward-Backward Fuzzy Predictive Control\",\"authors\":\"S. García-Nieto, J. V. Salcedo, D. Laurí, Miguel A. Martínez\",\"doi\":\"10.1109/CCA.2009.5280702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An extension of the model predictive control philosophy to the field of fuzzy control design is discussed. The main goal is to bring together the best features from both techniques. The basic idea is to divide the initial optimization problem in a set of recursive optimization subproblems or decision stages. Each subproblem is raised as a fuzzy LQR design where the goal is to define the set of feedback gains of a fuzzy Parallel Distributed Compensator (PDC) that minimizes the function cost using Linear Matrix Inequalities (LMIs). Therefore, the global controller is a set of PDC controllers that satisfies the Bellman optimality principle, minimizing the cost function both locally and globally, and guarantees stability and satisfies the control action constraints.\",\"PeriodicalId\":294950,\"journal\":{\"name\":\"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2009.5280702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2009.5280702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

讨论了模型预测控制理论在模糊控制设计领域的推广。主要目标是将两种技术的最佳特性结合在一起。其基本思想是将初始优化问题划分为一组递归优化子问题或决策阶段。每个子问题都是一个模糊LQR设计,其目标是定义模糊并行分布式补偿器(PDC)的反馈增益集,该增益集使用线性矩阵不等式(lmi)最小化函数代价。因此,全局控制器是一组PDC控制器,满足Bellman最优性原则,使局部和全局的代价函数最小,保证稳定性并满足控制动作约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Forward-Backward Fuzzy Predictive Control
An extension of the model predictive control philosophy to the field of fuzzy control design is discussed. The main goal is to bring together the best features from both techniques. The basic idea is to divide the initial optimization problem in a set of recursive optimization subproblems or decision stages. Each subproblem is raised as a fuzzy LQR design where the goal is to define the set of feedback gains of a fuzzy Parallel Distributed Compensator (PDC) that minimizes the function cost using Linear Matrix Inequalities (LMIs). Therefore, the global controller is a set of PDC controllers that satisfies the Bellman optimality principle, minimizing the cost function both locally and globally, and guarantees stability and satisfies the control action constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信