用轨迹交求解空间基本几何约束构型

X. Gao, C. Hoffmann, Wei-Qiang Yang
{"title":"用轨迹交求解空间基本几何约束构型","authors":"X. Gao, C. Hoffmann, Wei-Qiang Yang","doi":"10.1145/566282.566299","DOIUrl":null,"url":null,"abstract":"A basic idea of geometric constraint solving is to decompose the constraint problem into smaller ones according to some basic configurations. In this paper, we find all spatial basic configurations involving points, lines, and planes containing up to six geometric primitives in an automated way. Many of these basic configurations still resist effective analytical solutions. We propose the locus intersection method for geometric constraint solving, which is used to solve all these basic configurations.","PeriodicalId":286112,"journal":{"name":"International Conference on Smart Media and Applications","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"Solving spatial basic geometric constraint configurations with locus intersection\",\"authors\":\"X. Gao, C. Hoffmann, Wei-Qiang Yang\",\"doi\":\"10.1145/566282.566299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A basic idea of geometric constraint solving is to decompose the constraint problem into smaller ones according to some basic configurations. In this paper, we find all spatial basic configurations involving points, lines, and planes containing up to six geometric primitives in an automated way. Many of these basic configurations still resist effective analytical solutions. We propose the locus intersection method for geometric constraint solving, which is used to solve all these basic configurations.\",\"PeriodicalId\":286112,\"journal\":{\"name\":\"International Conference on Smart Media and Applications\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Smart Media and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/566282.566299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Smart Media and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/566282.566299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

几何约束求解的一个基本思想是根据一些基本构型将约束问题分解成更小的约束问题。在本文中,我们自动找到了包含多达六个几何基元的所有空间基本构型,包括点、线、面。这些基本配置中的许多仍然无法进行有效的分析解决。我们提出了求解几何约束的轨迹交法,用于求解所有这些基本构型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving spatial basic geometric constraint configurations with locus intersection
A basic idea of geometric constraint solving is to decompose the constraint problem into smaller ones according to some basic configurations. In this paper, we find all spatial basic configurations involving points, lines, and planes containing up to six geometric primitives in an automated way. Many of these basic configurations still resist effective analytical solutions. We propose the locus intersection method for geometric constraint solving, which is used to solve all these basic configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信