基于异步并行进化策略的支持向量机模型选择

T. Runarsson, S. Sigurdsson
{"title":"基于异步并行进化策略的支持向量机模型选择","authors":"T. Runarsson, S. Sigurdsson","doi":"10.1109/ICNNSP.2003.1279319","DOIUrl":null,"url":null,"abstract":"The application of a parallel evolutionary algorithm (ES) to model selection for support vector machines is examined. The problem of model selection is a computationally intense non-convex optimization problem. For this reason a parallel search strategy is desirable. A new non-blocking asynchronous ES is developed for this task. The algorithm is tested on five standard test sets optimizing a number of heuristic bounds on the expected generalization error.","PeriodicalId":336216,"journal":{"name":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Model selection for support vector machines using an asynchronous parallel evolution strategy\",\"authors\":\"T. Runarsson, S. Sigurdsson\",\"doi\":\"10.1109/ICNNSP.2003.1279319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of a parallel evolutionary algorithm (ES) to model selection for support vector machines is examined. The problem of model selection is a computationally intense non-convex optimization problem. For this reason a parallel search strategy is desirable. A new non-blocking asynchronous ES is developed for this task. The algorithm is tested on five standard test sets optimizing a number of heuristic bounds on the expected generalization error.\",\"PeriodicalId\":336216,\"journal\":{\"name\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNNSP.2003.1279319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2003.1279319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了并行进化算法在支持向量机模型选择中的应用。模型选择问题是一个计算强度较大的非凸优化问题。由于这个原因,并行搜索策略是可取的。为此开发了一种新的非阻塞异步ES。该算法在五个标准测试集上进行了测试,优化了期望泛化误差的一些启发式边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model selection for support vector machines using an asynchronous parallel evolution strategy
The application of a parallel evolutionary algorithm (ES) to model selection for support vector machines is examined. The problem of model selection is a computationally intense non-convex optimization problem. For this reason a parallel search strategy is desirable. A new non-blocking asynchronous ES is developed for this task. The algorithm is tested on five standard test sets optimizing a number of heuristic bounds on the expected generalization error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信