大型电池性能最大化的建模与实时调度

Eugene Kim, Jinkyu Lee, K. Shin
{"title":"大型电池性能最大化的建模与实时调度","authors":"Eugene Kim, Jinkyu Lee, K. Shin","doi":"10.1109/RTSS.2015.11","DOIUrl":null,"url":null,"abstract":"Modern electric vehicles are equipped with an advanced battery management system, responsible for providing the necessary power efficiently from batteries to electric motors while maintaining the batteries within an operational condition. Because discharge-rate and temperature of batteries affect their health and efficiency significantly, batteries are managed to mitigate their discharge and thermal stresses. In this paper, we develop a real-time, efficient integrated management system for discharge-rate and temperature of batteries. To achieve this objective, we first construct a prognosis system predicting the likely states of batteries' capacity and capability. Based on prognostic estimates of the impact of temperature and discharge-rate on the performance, we solve an optimization problem to search for efficient discharging and cooling scheduling. Our experimentation and simulation demonstrate that the proposed management enhances system performance up to 85.3%.","PeriodicalId":239882,"journal":{"name":"2015 IEEE Real-Time Systems Symposium","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Modeling and Real-Time Scheduling of Large-Scale Batteries for Maximizing Performance\",\"authors\":\"Eugene Kim, Jinkyu Lee, K. Shin\",\"doi\":\"10.1109/RTSS.2015.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern electric vehicles are equipped with an advanced battery management system, responsible for providing the necessary power efficiently from batteries to electric motors while maintaining the batteries within an operational condition. Because discharge-rate and temperature of batteries affect their health and efficiency significantly, batteries are managed to mitigate their discharge and thermal stresses. In this paper, we develop a real-time, efficient integrated management system for discharge-rate and temperature of batteries. To achieve this objective, we first construct a prognosis system predicting the likely states of batteries' capacity and capability. Based on prognostic estimates of the impact of temperature and discharge-rate on the performance, we solve an optimization problem to search for efficient discharging and cooling scheduling. Our experimentation and simulation demonstrate that the proposed management enhances system performance up to 85.3%.\",\"PeriodicalId\":239882,\"journal\":{\"name\":\"2015 IEEE Real-Time Systems Symposium\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Real-Time Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS.2015.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2015.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

现代电动汽车配备了先进的电池管理系统,负责有效地从电池向电动机提供必要的电力,同时保持电池处于运行状态。由于电池的放电速率和温度对电池的健康和效率影响很大,因此对电池进行了控制,以减轻电池的放电和热应力。本文开发了一个实时、高效的电池放电率和温度综合管理系统。为了实现这一目标,我们首先构建了一个预测系统来预测电池容量和容量的可能状态。在预测温度和放电速率对性能影响的基础上,解决了一个优化问题,以寻找有效的放电和冷却调度。实验和仿真结果表明,该管理方法可使系统性能提高85.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and Real-Time Scheduling of Large-Scale Batteries for Maximizing Performance
Modern electric vehicles are equipped with an advanced battery management system, responsible for providing the necessary power efficiently from batteries to electric motors while maintaining the batteries within an operational condition. Because discharge-rate and temperature of batteries affect their health and efficiency significantly, batteries are managed to mitigate their discharge and thermal stresses. In this paper, we develop a real-time, efficient integrated management system for discharge-rate and temperature of batteries. To achieve this objective, we first construct a prognosis system predicting the likely states of batteries' capacity and capability. Based on prognostic estimates of the impact of temperature and discharge-rate on the performance, we solve an optimization problem to search for efficient discharging and cooling scheduling. Our experimentation and simulation demonstrate that the proposed management enhances system performance up to 85.3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信