公制毛毛虫和花盆的公制尺寸

Gusma Hidayanti, A. Amrullah, Nani Kurniati, L. Hayati
{"title":"公制毛毛虫和花盆的公制尺寸","authors":"Gusma Hidayanti, A. Amrullah, Nani Kurniati, L. Hayati","doi":"10.19184/mims.v22i1.30350","DOIUrl":null,"url":null,"abstract":"The metric dimension is a concept that has many applications, such as robotic navigation. This concept will distinguish each vertex of a graph based on some vertices. The distinguishing vertices are called the basis of the graph. Let G be a connected graph, the metric dimension, dim(G), is the smallest cardinality of the basis of graph G. On this paper, we present the metric dimensions of the bridge graph of a homogeneous caterpillar graph Cm,n and a generalized flower pot graph $C_p-K_{(q_1, q_2,\\cdos,q_p}$. This research was conducted by the approach of structure analysis by location of the bridge vertices, the edge of the bridge, and the order of the graph. The results show that the metric dimensions of the bridge graph are at least can be reduced at most 2, and the maximum values are the same as the value of $m(n-1)+ \\sum_{i=1}^p q_i- 2p$.Keywords: Metric dimension, caterpillar, unicyclic, bridgeMSC2020: 05C12","PeriodicalId":264607,"journal":{"name":"Majalah Ilmiah Matematika dan Statistika","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIMENSI METRIK GRAF HASIL OPERASI JEMBATAN DARI CATERPILLAR HOMOGEN DAN POT BUNGA DIPERUMUM\",\"authors\":\"Gusma Hidayanti, A. Amrullah, Nani Kurniati, L. Hayati\",\"doi\":\"10.19184/mims.v22i1.30350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The metric dimension is a concept that has many applications, such as robotic navigation. This concept will distinguish each vertex of a graph based on some vertices. The distinguishing vertices are called the basis of the graph. Let G be a connected graph, the metric dimension, dim(G), is the smallest cardinality of the basis of graph G. On this paper, we present the metric dimensions of the bridge graph of a homogeneous caterpillar graph Cm,n and a generalized flower pot graph $C_p-K_{(q_1, q_2,\\\\cdos,q_p}$. This research was conducted by the approach of structure analysis by location of the bridge vertices, the edge of the bridge, and the order of the graph. The results show that the metric dimensions of the bridge graph are at least can be reduced at most 2, and the maximum values are the same as the value of $m(n-1)+ \\\\sum_{i=1}^p q_i- 2p$.Keywords: Metric dimension, caterpillar, unicyclic, bridgeMSC2020: 05C12\",\"PeriodicalId\":264607,\"journal\":{\"name\":\"Majalah Ilmiah Matematika dan Statistika\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Majalah Ilmiah Matematika dan Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/mims.v22i1.30350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Ilmiah Matematika dan Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/mims.v22i1.30350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

度量维度是一个有许多应用的概念,例如机器人导航。这个概念将根据一些顶点来区分图中的每个顶点。区分顶点称为图的基。设G为连通图,则度量维数dim(G)是图G基的最小基数。本文给出了齐次毛虫图Cm,n和广义花盆图$C_p-K_{(q_1, q_2,\cdos,q_p}$的桥图的度量维数。本研究采用基于桥的顶点位置、桥的边缘和图的顺序进行结构分析的方法。结果表明:该桥图的度量维数最少可以减少至多2,最大值等于$m(n-1)+ \sum_{i=1}^p q_i- 2p$的值。关键词:公制尺寸,履带,单环,桥梁,sc2020: 05C12
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DIMENSI METRIK GRAF HASIL OPERASI JEMBATAN DARI CATERPILLAR HOMOGEN DAN POT BUNGA DIPERUMUM
The metric dimension is a concept that has many applications, such as robotic navigation. This concept will distinguish each vertex of a graph based on some vertices. The distinguishing vertices are called the basis of the graph. Let G be a connected graph, the metric dimension, dim(G), is the smallest cardinality of the basis of graph G. On this paper, we present the metric dimensions of the bridge graph of a homogeneous caterpillar graph Cm,n and a generalized flower pot graph $C_p-K_{(q_1, q_2,\cdos,q_p}$. This research was conducted by the approach of structure analysis by location of the bridge vertices, the edge of the bridge, and the order of the graph. The results show that the metric dimensions of the bridge graph are at least can be reduced at most 2, and the maximum values are the same as the value of $m(n-1)+ \sum_{i=1}^p q_i- 2p$.Keywords: Metric dimension, caterpillar, unicyclic, bridgeMSC2020: 05C12
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信