基于确定性变换的神经网络权重矩阵

Pol Grau Jurado, Xinyue Liang, S. Chatterjee
{"title":"基于确定性变换的神经网络权重矩阵","authors":"Pol Grau Jurado, Xinyue Liang, S. Chatterjee","doi":"10.1109/icassp43922.2022.9747256","DOIUrl":null,"url":null,"abstract":"We propose to use deterministic transforms as weight matrices for several feedforward neural networks. The use of deterministic transforms helps to reduce the computational complexity in two ways: (1) matrix-vector product complexity in forward pass, helping real time complexity, and (2) fully avoiding backpropagation in the training stage. For each layer of a feedforward network, we pro-pose two unsupervised methods to choose the most appropriate deterministic transform from a set of transforms (a bag of well-known transforms). Experimental results show that the use of deterministic transforms is as good as traditional random matrices in the sense of providing similar classification performance.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deterministic Transform Based Weight Matrices for Neural Networks\",\"authors\":\"Pol Grau Jurado, Xinyue Liang, S. Chatterjee\",\"doi\":\"10.1109/icassp43922.2022.9747256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose to use deterministic transforms as weight matrices for several feedforward neural networks. The use of deterministic transforms helps to reduce the computational complexity in two ways: (1) matrix-vector product complexity in forward pass, helping real time complexity, and (2) fully avoiding backpropagation in the training stage. For each layer of a feedforward network, we pro-pose two unsupervised methods to choose the most appropriate deterministic transform from a set of transforms (a bag of well-known transforms). Experimental results show that the use of deterministic transforms is as good as traditional random matrices in the sense of providing similar classification performance.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9747256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出将确定性变换作为几个前馈神经网络的权矩阵。确定性变换的使用有助于在两个方面降低计算复杂度:(1)前向传递的矩阵向量积复杂度,有助于实时复杂度,(2)完全避免训练阶段的反向传播。对于前馈网络的每一层,我们提出了两种无监督的方法来从一组变换(一袋众所周知的变换)中选择最合适的确定性变换。实验结果表明,在提供相似分类性能的意义上,确定性变换的使用与传统随机矩阵一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic Transform Based Weight Matrices for Neural Networks
We propose to use deterministic transforms as weight matrices for several feedforward neural networks. The use of deterministic transforms helps to reduce the computational complexity in two ways: (1) matrix-vector product complexity in forward pass, helping real time complexity, and (2) fully avoiding backpropagation in the training stage. For each layer of a feedforward network, we pro-pose two unsupervised methods to choose the most appropriate deterministic transform from a set of transforms (a bag of well-known transforms). Experimental results show that the use of deterministic transforms is as good as traditional random matrices in the sense of providing similar classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信