教程:数值方法的抽象

G. Sussman, Matthew Halfant
{"title":"教程:数值方法的抽象","authors":"G. Sussman, Matthew Halfant","doi":"10.1145/62678.62679","DOIUrl":null,"url":null,"abstract":"We illustrate how the liberal use of high-order procedural abstractions and infinite streams helps us to express some of the vocabulary and methods of numerical analysis. We develop a software toolbox encapsulating the technique of Richardson extrapolation, and we apply these tools to the problems of numerical integration and differentiation. By separating the idea of Richardson extrapolation from its use in particular circumstances we indicate how numerical programs can be written that exhibit the structure of the ideas from which they are formed.","PeriodicalId":119710,"journal":{"name":"Proceedings of the 1988 ACM conference on LISP and functional programming","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tutorial: abstraction in numerical methods\",\"authors\":\"G. Sussman, Matthew Halfant\",\"doi\":\"10.1145/62678.62679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We illustrate how the liberal use of high-order procedural abstractions and infinite streams helps us to express some of the vocabulary and methods of numerical analysis. We develop a software toolbox encapsulating the technique of Richardson extrapolation, and we apply these tools to the problems of numerical integration and differentiation. By separating the idea of Richardson extrapolation from its use in particular circumstances we indicate how numerical programs can be written that exhibit the structure of the ideas from which they are formed.\",\"PeriodicalId\":119710,\"journal\":{\"name\":\"Proceedings of the 1988 ACM conference on LISP and functional programming\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1988 ACM conference on LISP and functional programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/62678.62679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1988 ACM conference on LISP and functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/62678.62679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们说明了高阶程序抽象和无限流的自由使用如何帮助我们表达一些数值分析的词汇和方法。我们开发了一个软件工具箱封装理查森外推技术,并将这些工具应用于数值积分和微分问题。通过将理查森外推的思想与其在特定情况下的应用分开,我们指出了如何编写数字程序,以展示形成它们的思想的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tutorial: abstraction in numerical methods
We illustrate how the liberal use of high-order procedural abstractions and infinite streams helps us to express some of the vocabulary and methods of numerical analysis. We develop a software toolbox encapsulating the technique of Richardson extrapolation, and we apply these tools to the problems of numerical integration and differentiation. By separating the idea of Richardson extrapolation from its use in particular circumstances we indicate how numerical programs can be written that exhibit the structure of the ideas from which they are formed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信