风力涡轮机成本降低:风力系统的详细LCOE-Surface模型

Khadija El Kinani, S. L. Ballois, L. Vido
{"title":"风力涡轮机成本降低:风力系统的详细LCOE-Surface模型","authors":"Khadija El Kinani, S. L. Ballois, L. Vido","doi":"10.1109/SMART55236.2022.9990386","DOIUrl":null,"url":null,"abstract":"The study presented in this paper focuses on the development of a wind system model. The particularity of this model is that it considers two distinct criteria: the Levelized Cost of Energy (LCOE) and the surface area occupied by wind farms. The model is developed using Matlab software and then a Multi-Objective Particle Swarm optimization MOPSO algorithm is used to minimize the surface area occupied by the entire modelled wind system, while minimizing the LCOE.","PeriodicalId":432948,"journal":{"name":"2022 Second International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wind Turbine Cost Reduction: a Detailed LCOE-Surface Model of a Wind System\",\"authors\":\"Khadija El Kinani, S. L. Ballois, L. Vido\",\"doi\":\"10.1109/SMART55236.2022.9990386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study presented in this paper focuses on the development of a wind system model. The particularity of this model is that it considers two distinct criteria: the Levelized Cost of Energy (LCOE) and the surface area occupied by wind farms. The model is developed using Matlab software and then a Multi-Objective Particle Swarm optimization MOPSO algorithm is used to minimize the surface area occupied by the entire modelled wind system, while minimizing the LCOE.\",\"PeriodicalId\":432948,\"journal\":{\"name\":\"2022 Second International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Second International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMART55236.2022.9990386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Second International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMART55236.2022.9990386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的研究重点是风系统模型的开发。该模型的特殊之处在于它考虑了两个截然不同的标准:平准化能源成本(LCOE)和风电场占地面积。利用Matlab软件建立模型,利用多目标粒子群优化MOPSO算法使整个风系统所占表面积最小化,同时使LCOE最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wind Turbine Cost Reduction: a Detailed LCOE-Surface Model of a Wind System
The study presented in this paper focuses on the development of a wind system model. The particularity of this model is that it considers two distinct criteria: the Levelized Cost of Energy (LCOE) and the surface area occupied by wind farms. The model is developed using Matlab software and then a Multi-Objective Particle Swarm optimization MOPSO algorithm is used to minimize the surface area occupied by the entire modelled wind system, while minimizing the LCOE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信