{"title":"层次聚类阈值的学习","authors":"K. Daniels, C. Giraud-Carrier","doi":"10.1109/ICMLA.2006.33","DOIUrl":null,"url":null,"abstract":"Most partitional clustering algorithms require the number of desired clusters to be set a priori. Not only is this somewhat counter-intuitive, it is also difficult except in the simplest of situations. By contrast, hierarchical clustering may create partitions with varying numbers of clusters. The actual final partition depends on a threshold placed on the similarity measure used. Given a cluster quality metric, one can efficiently discover an appropriate threshold through a form of semi-supervised learning. This paper shows one such solution for complete-link hierarchical agglomerative clustering using the F-measure and a small subset of labeled examples. Empirical evaluation demonstrates promise","PeriodicalId":297071,"journal":{"name":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Learning the Threshold in Hierarchical Agglomerative Clustering\",\"authors\":\"K. Daniels, C. Giraud-Carrier\",\"doi\":\"10.1109/ICMLA.2006.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most partitional clustering algorithms require the number of desired clusters to be set a priori. Not only is this somewhat counter-intuitive, it is also difficult except in the simplest of situations. By contrast, hierarchical clustering may create partitions with varying numbers of clusters. The actual final partition depends on a threshold placed on the similarity measure used. Given a cluster quality metric, one can efficiently discover an appropriate threshold through a form of semi-supervised learning. This paper shows one such solution for complete-link hierarchical agglomerative clustering using the F-measure and a small subset of labeled examples. Empirical evaluation demonstrates promise\",\"PeriodicalId\":297071,\"journal\":{\"name\":\"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2006.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2006.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning the Threshold in Hierarchical Agglomerative Clustering
Most partitional clustering algorithms require the number of desired clusters to be set a priori. Not only is this somewhat counter-intuitive, it is also difficult except in the simplest of situations. By contrast, hierarchical clustering may create partitions with varying numbers of clusters. The actual final partition depends on a threshold placed on the similarity measure used. Given a cluster quality metric, one can efficiently discover an appropriate threshold through a form of semi-supervised learning. This paper shows one such solution for complete-link hierarchical agglomerative clustering using the F-measure and a small subset of labeled examples. Empirical evaluation demonstrates promise