层次聚类阈值的学习

K. Daniels, C. Giraud-Carrier
{"title":"层次聚类阈值的学习","authors":"K. Daniels, C. Giraud-Carrier","doi":"10.1109/ICMLA.2006.33","DOIUrl":null,"url":null,"abstract":"Most partitional clustering algorithms require the number of desired clusters to be set a priori. Not only is this somewhat counter-intuitive, it is also difficult except in the simplest of situations. By contrast, hierarchical clustering may create partitions with varying numbers of clusters. The actual final partition depends on a threshold placed on the similarity measure used. Given a cluster quality metric, one can efficiently discover an appropriate threshold through a form of semi-supervised learning. This paper shows one such solution for complete-link hierarchical agglomerative clustering using the F-measure and a small subset of labeled examples. Empirical evaluation demonstrates promise","PeriodicalId":297071,"journal":{"name":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Learning the Threshold in Hierarchical Agglomerative Clustering\",\"authors\":\"K. Daniels, C. Giraud-Carrier\",\"doi\":\"10.1109/ICMLA.2006.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most partitional clustering algorithms require the number of desired clusters to be set a priori. Not only is this somewhat counter-intuitive, it is also difficult except in the simplest of situations. By contrast, hierarchical clustering may create partitions with varying numbers of clusters. The actual final partition depends on a threshold placed on the similarity measure used. Given a cluster quality metric, one can efficiently discover an appropriate threshold through a form of semi-supervised learning. This paper shows one such solution for complete-link hierarchical agglomerative clustering using the F-measure and a small subset of labeled examples. Empirical evaluation demonstrates promise\",\"PeriodicalId\":297071,\"journal\":{\"name\":\"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2006.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2006.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

大多数分区聚类算法需要先验地设置所需聚类的数量。这不仅有点违反直觉,而且除了在最简单的情况下,它也很困难。相比之下,分层集群可以创建具有不同数量集群的分区。实际的最终分区取决于所使用的相似性度量的阈值。给定一个聚类质量度量,人们可以通过半监督学习的形式有效地发现一个适当的阈值。本文给出了一种利用f测度和标记样本的小子集的完全链接层次聚集聚类的解决方案。实证评价表明前景看好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning the Threshold in Hierarchical Agglomerative Clustering
Most partitional clustering algorithms require the number of desired clusters to be set a priori. Not only is this somewhat counter-intuitive, it is also difficult except in the simplest of situations. By contrast, hierarchical clustering may create partitions with varying numbers of clusters. The actual final partition depends on a threshold placed on the similarity measure used. Given a cluster quality metric, one can efficiently discover an appropriate threshold through a form of semi-supervised learning. This paper shows one such solution for complete-link hierarchical agglomerative clustering using the F-measure and a small subset of labeled examples. Empirical evaluation demonstrates promise
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信