图像绘画应用于美术的甄别性候选人选择

Lucia Cipolina-Kun, S. M. Papadakis, Simone Caenazzo
{"title":"图像绘画应用于美术的甄别性候选人选择","authors":"Lucia Cipolina-Kun, S. M. Papadakis, Simone Caenazzo","doi":"10.52591/lxai202207176","DOIUrl":null,"url":null,"abstract":"Within the field of Cultural Heritage, image inpainting is a conservation process that fills in missing or damaged parts of an artwork to present a complete image. Multi-modal diffusion models have brought photo-realistic results on image inpainting where content can be generated by using descriptive text prompts. However, these models fail to produce content consistent with a particular painter’s artistic style and period, being unsuitable for the reconstruction of fine arts and requiring laborious expert judgement. Moreover, generative models produce many plausible outputs for a given prompt. This work presents a methodology to improve the inpainting of fine art by automating the selection process of inpainted candidates. We propose a discriminator model that processes the output of inpainting models and assigns a probability that indicates the likelihood that the restored image belongs to a certain painter.","PeriodicalId":366061,"journal":{"name":"LatinX in AI at International Conference on Machine Learning 2022","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discriminative Candidate Selection for Image Inpainting Applications to the Fine Arts\",\"authors\":\"Lucia Cipolina-Kun, S. M. Papadakis, Simone Caenazzo\",\"doi\":\"10.52591/lxai202207176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the field of Cultural Heritage, image inpainting is a conservation process that fills in missing or damaged parts of an artwork to present a complete image. Multi-modal diffusion models have brought photo-realistic results on image inpainting where content can be generated by using descriptive text prompts. However, these models fail to produce content consistent with a particular painter’s artistic style and period, being unsuitable for the reconstruction of fine arts and requiring laborious expert judgement. Moreover, generative models produce many plausible outputs for a given prompt. This work presents a methodology to improve the inpainting of fine art by automating the selection process of inpainted candidates. We propose a discriminator model that processes the output of inpainting models and assigns a probability that indicates the likelihood that the restored image belongs to a certain painter.\",\"PeriodicalId\":366061,\"journal\":{\"name\":\"LatinX in AI at International Conference on Machine Learning 2022\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LatinX in AI at International Conference on Machine Learning 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52591/lxai202207176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at International Conference on Machine Learning 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/lxai202207176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在文化遗产领域,“图像补绘”是通过填补缺失或损坏的部分,呈现完整图像的保存过程。多模态扩散模型为图像绘制带来了逼真的效果,其中内容可以通过使用描述性文本提示来生成。然而,这些模型不能产生与特定画家的艺术风格和时期相一致的内容,不适合美术的重建,需要费力的专家判断。此外,生成模型针对给定的提示产生许多似是而非的输出。这项工作提出了一种方法,通过自动化的选择过程,以提高美术的绘画候选人。我们提出了一个鉴别器模型,它处理修复模型的输出,并分配一个概率,表明恢复图像属于某个画家的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminative Candidate Selection for Image Inpainting Applications to the Fine Arts
Within the field of Cultural Heritage, image inpainting is a conservation process that fills in missing or damaged parts of an artwork to present a complete image. Multi-modal diffusion models have brought photo-realistic results on image inpainting where content can be generated by using descriptive text prompts. However, these models fail to produce content consistent with a particular painter’s artistic style and period, being unsuitable for the reconstruction of fine arts and requiring laborious expert judgement. Moreover, generative models produce many plausible outputs for a given prompt. This work presents a methodology to improve the inpainting of fine art by automating the selection process of inpainted candidates. We propose a discriminator model that processes the output of inpainting models and assigns a probability that indicates the likelihood that the restored image belongs to a certain painter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信