核实例分割的跳过层次特征金字塔网络

Hyekyoung Hwang, T. Bui, Sang-il Ahn, Jitae Shin
{"title":"核实例分割的跳过层次特征金字塔网络","authors":"Hyekyoung Hwang, T. Bui, Sang-il Ahn, Jitae Shin","doi":"10.23919/APSIPA.2018.8659795","DOIUrl":null,"url":null,"abstract":"Dealing with multiple scale of object is main problem in computer vision. Feature Pyramid Networks (FPN) has widely used in instance segmentation area to utilize multiple scales of features. Using different scale of feature maps, the method enables to capture a various sizes of objects in a scene. However, FPN still cannot propagate semantic information of deeper layer into the shallow layer which contains spatial information strongly. In this paper, we propose a novel network which consists of stage residual connection and aggregation between $\\boldsymbol{C_{i}}$ and $\\boldsymbol{P}_{\\boldsymbol{i}-1}$ above the FPN to improve the imperfectness of original FPNs for the instance segmentation. Our proposed network is called Skipped-Hierarchical Feature Pyramid Networks (SH-FPN), integrated on Mask R-CNN. Experimental results of SH-FPN show that it has significant improvement on Data Science Bowl 2018 benchmark dataset on nuclei segmentation, compared to FPN.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Skipped-Hierarchical Feature Pyramid Networks for Nuclei Instance Segmentation\",\"authors\":\"Hyekyoung Hwang, T. Bui, Sang-il Ahn, Jitae Shin\",\"doi\":\"10.23919/APSIPA.2018.8659795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dealing with multiple scale of object is main problem in computer vision. Feature Pyramid Networks (FPN) has widely used in instance segmentation area to utilize multiple scales of features. Using different scale of feature maps, the method enables to capture a various sizes of objects in a scene. However, FPN still cannot propagate semantic information of deeper layer into the shallow layer which contains spatial information strongly. In this paper, we propose a novel network which consists of stage residual connection and aggregation between $\\\\boldsymbol{C_{i}}$ and $\\\\boldsymbol{P}_{\\\\boldsymbol{i}-1}$ above the FPN to improve the imperfectness of original FPNs for the instance segmentation. Our proposed network is called Skipped-Hierarchical Feature Pyramid Networks (SH-FPN), integrated on Mask R-CNN. Experimental results of SH-FPN show that it has significant improvement on Data Science Bowl 2018 benchmark dataset on nuclei segmentation, compared to FPN.\",\"PeriodicalId\":287799,\"journal\":{\"name\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPA.2018.8659795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多尺度目标的处理是计算机视觉中的主要问题。特征金字塔网络(FPN)利用多尺度的特征在实例分割领域得到了广泛的应用。该方法使用不同比例的特征图,可以捕获场景中不同大小的物体。然而,FPN仍然不能将深层的语义信息传播到含有强烈空间信息的浅层。本文提出了一种新的FPN网络,该网络在FPN之上的$\boldsymbol{C_{i}}$和$\boldsymbol{P}_{\boldsymbol{i}-1}$之间进行阶段残差连接和聚合,以改善原始FPN在实例分割方面的不完善性。我们提出的网络被称为跳过-分层特征金字塔网络(SH-FPN),集成在掩码R-CNN上。实验结果表明,与FPN相比,SH-FPN在2018年数据科学碗基准数据集上的核分割有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skipped-Hierarchical Feature Pyramid Networks for Nuclei Instance Segmentation
Dealing with multiple scale of object is main problem in computer vision. Feature Pyramid Networks (FPN) has widely used in instance segmentation area to utilize multiple scales of features. Using different scale of feature maps, the method enables to capture a various sizes of objects in a scene. However, FPN still cannot propagate semantic information of deeper layer into the shallow layer which contains spatial information strongly. In this paper, we propose a novel network which consists of stage residual connection and aggregation between $\boldsymbol{C_{i}}$ and $\boldsymbol{P}_{\boldsymbol{i}-1}$ above the FPN to improve the imperfectness of original FPNs for the instance segmentation. Our proposed network is called Skipped-Hierarchical Feature Pyramid Networks (SH-FPN), integrated on Mask R-CNN. Experimental results of SH-FPN show that it has significant improvement on Data Science Bowl 2018 benchmark dataset on nuclei segmentation, compared to FPN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信