{"title":"压电体积脉搏波在时域和频域估计心率的特性","authors":"Luisa De Palma, M. Scarpetta, M. Spadavecchia","doi":"10.1109/MeMeA49120.2020.9137226","DOIUrl":null,"url":null,"abstract":"The increasing need to monitor Heart Rate (HR) has led to the development of dedicated devices based on miniaturized sensors and to their consequent pervasiveness. In this paper the aim is to develop a DAQ based system supervised by a LabVIEW Virtual Instrument to estimate the HR by means of an accelerometric plethysmograph. Two different signal processing techniques have been developed to estimate the HR respectively in time- and frequency domain, to study and compare their performances and to monitor the patient's heartbeat at rest by identifying possible pathological conditions or diseases.","PeriodicalId":152478,"journal":{"name":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Characterization of Heart Rate Estimation Using Piezoelectric Plethysmography in Time- and Frequency-domain\",\"authors\":\"Luisa De Palma, M. Scarpetta, M. Spadavecchia\",\"doi\":\"10.1109/MeMeA49120.2020.9137226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing need to monitor Heart Rate (HR) has led to the development of dedicated devices based on miniaturized sensors and to their consequent pervasiveness. In this paper the aim is to develop a DAQ based system supervised by a LabVIEW Virtual Instrument to estimate the HR by means of an accelerometric plethysmograph. Two different signal processing techniques have been developed to estimate the HR respectively in time- and frequency domain, to study and compare their performances and to monitor the patient's heartbeat at rest by identifying possible pathological conditions or diseases.\",\"PeriodicalId\":152478,\"journal\":{\"name\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA49120.2020.9137226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA49120.2020.9137226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of Heart Rate Estimation Using Piezoelectric Plethysmography in Time- and Frequency-domain
The increasing need to monitor Heart Rate (HR) has led to the development of dedicated devices based on miniaturized sensors and to their consequent pervasiveness. In this paper the aim is to develop a DAQ based system supervised by a LabVIEW Virtual Instrument to estimate the HR by means of an accelerometric plethysmograph. Two different signal processing techniques have been developed to estimate the HR respectively in time- and frequency domain, to study and compare their performances and to monitor the patient's heartbeat at rest by identifying possible pathological conditions or diseases.