{"title":"基于优化损失函数的鸟类声音自动识别广义去噪方法","authors":"Huangqiang Fang, Yulin He, Wanyang Xu, Yanyan Xu, Dengfeng Ke, Kaile Su","doi":"10.1109/ICCCS49078.2020.9118426","DOIUrl":null,"url":null,"abstract":"In natural environments, bird sounds are often accompanied by background noise, so denoising becomes crucial to automated bird sound recognition. Recently, thanks to neural network embeddings, the deep clustering method has achieved better performances than traditional denoising methods, like filter-based methods, due to its ability to solve the problem when noise is in the same frequency range as bird sounds. In this paper, we propose a generalized denoising method based on deep clustering, which can process more complex recordings with less distortion. Also, we optimize the original affinity loss function to get a novel loss function to ensure the embedding vectors with the minimum distance belong to the same source, named Joint Center Loss (JCL), which can both increase the inter-class variance and decrease the intra-class variance of embeddings. Experiments are conducted on the gated convolutional neural network architecture and the bidirectional long short term memory architecture respectively with different loss functions. Given the signal-noise ratio being -3dB, the recognition accuracy increases relatively by 9.5% with the proposed denoising method in the best case, and the Relative Root Mean Square Error (RRMSE) increases relatively by 14.2% by using JCL, compared with the original affinity loss function AL.","PeriodicalId":105556,"journal":{"name":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Generalized Denoising Method with an Optimized Loss Function for Automated Bird Sound Recognition\",\"authors\":\"Huangqiang Fang, Yulin He, Wanyang Xu, Yanyan Xu, Dengfeng Ke, Kaile Su\",\"doi\":\"10.1109/ICCCS49078.2020.9118426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In natural environments, bird sounds are often accompanied by background noise, so denoising becomes crucial to automated bird sound recognition. Recently, thanks to neural network embeddings, the deep clustering method has achieved better performances than traditional denoising methods, like filter-based methods, due to its ability to solve the problem when noise is in the same frequency range as bird sounds. In this paper, we propose a generalized denoising method based on deep clustering, which can process more complex recordings with less distortion. Also, we optimize the original affinity loss function to get a novel loss function to ensure the embedding vectors with the minimum distance belong to the same source, named Joint Center Loss (JCL), which can both increase the inter-class variance and decrease the intra-class variance of embeddings. Experiments are conducted on the gated convolutional neural network architecture and the bidirectional long short term memory architecture respectively with different loss functions. Given the signal-noise ratio being -3dB, the recognition accuracy increases relatively by 9.5% with the proposed denoising method in the best case, and the Relative Root Mean Square Error (RRMSE) increases relatively by 14.2% by using JCL, compared with the original affinity loss function AL.\",\"PeriodicalId\":105556,\"journal\":{\"name\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCS49078.2020.9118426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS49078.2020.9118426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
在自然环境中,鸟叫声往往伴随着背景噪声,因此去噪对鸟叫声的自动识别至关重要。最近,由于神经网络嵌入,深度聚类方法能够解决噪声与鸟鸣在同一频率范围内的问题,因此比传统的去噪方法(如基于滤波器的方法)取得了更好的性能。本文提出了一种基于深度聚类的广义去噪方法,该方法能够以较小的失真处理更复杂的录音。同时,我们对原有的亲和损失函数进行优化,得到一种新的损失函数,以保证距离最小的嵌入向量属于同一源,称为联合中心损失(Joint Center loss, JCL),它既可以增加嵌入的类间方差,又可以减小嵌入的类内方差。分别用不同的损失函数对门控卷积神经网络结构和双向长短期记忆结构进行了实验。在信噪比为-3dB的情况下,与原始亲和损失函数AL相比,采用JCL去噪方法识别精度相对提高9.5%,相对均方根误差(RRMSE)相对提高14.2%。
A Generalized Denoising Method with an Optimized Loss Function for Automated Bird Sound Recognition
In natural environments, bird sounds are often accompanied by background noise, so denoising becomes crucial to automated bird sound recognition. Recently, thanks to neural network embeddings, the deep clustering method has achieved better performances than traditional denoising methods, like filter-based methods, due to its ability to solve the problem when noise is in the same frequency range as bird sounds. In this paper, we propose a generalized denoising method based on deep clustering, which can process more complex recordings with less distortion. Also, we optimize the original affinity loss function to get a novel loss function to ensure the embedding vectors with the minimum distance belong to the same source, named Joint Center Loss (JCL), which can both increase the inter-class variance and decrease the intra-class variance of embeddings. Experiments are conducted on the gated convolutional neural network architecture and the bidirectional long short term memory architecture respectively with different loss functions. Given the signal-noise ratio being -3dB, the recognition accuracy increases relatively by 9.5% with the proposed denoising method in the best case, and the Relative Root Mean Square Error (RRMSE) increases relatively by 14.2% by using JCL, compared with the original affinity loss function AL.