{"title":"基于动态贝叶斯网络的自动说话人识别","authors":"Lifeng Sang, Zhaohui Wu, Yingchun Yang, Wanfeng Zhang","doi":"10.1109/ICME.2003.1221386","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to automatic speaker recognition using dynamic Bayesian network (DBN). DBNs have a precise and well-understand probabilistic semantics, and it has the ability to incorporate prior knowledge, to represent arbitrary non-linearities, and to handle hidden variables and missing data in a principled way with high extensibility. Experimental evaluation over YOHO corpus shows promising results compared to other classical methods.","PeriodicalId":118560,"journal":{"name":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automatic speaker recognition using dynamic Bayesian network\",\"authors\":\"Lifeng Sang, Zhaohui Wu, Yingchun Yang, Wanfeng Zhang\",\"doi\":\"10.1109/ICME.2003.1221386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to automatic speaker recognition using dynamic Bayesian network (DBN). DBNs have a precise and well-understand probabilistic semantics, and it has the ability to incorporate prior knowledge, to represent arbitrary non-linearities, and to handle hidden variables and missing data in a principled way with high extensibility. Experimental evaluation over YOHO corpus shows promising results compared to other classical methods.\",\"PeriodicalId\":118560,\"journal\":{\"name\":\"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2003.1221386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2003.1221386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic speaker recognition using dynamic Bayesian network
This paper presents a novel approach to automatic speaker recognition using dynamic Bayesian network (DBN). DBNs have a precise and well-understand probabilistic semantics, and it has the ability to incorporate prior knowledge, to represent arbitrary non-linearities, and to handle hidden variables and missing data in a principled way with high extensibility. Experimental evaluation over YOHO corpus shows promising results compared to other classical methods.