基于稀疏性似然一致性的分布式粒子- pda滤波器的目标跟踪

Rene Repp, P. Rajmic, Florian Meyer, F. Hlawatsch
{"title":"基于稀疏性似然一致性的分布式粒子- pda滤波器的目标跟踪","authors":"Rene Repp, P. Rajmic, Florian Meyer, F. Hlawatsch","doi":"10.1109/SSP.2018.8450815","DOIUrl":null,"url":null,"abstract":"We propose a distributed particle-based probabilistic data association filter (PDAF) for target tracking in the presence of clutter and missed detections. The proposed PDAF employs a new “sparsity-promoting” likelihood consensus that uses the orthogonal matching pursuit for a sparse approximation of the local likelihood functions. Simulation results demonstrate that, compared to the conventional likelihood consensus based on least-squares approximation, large savings in intersensor communication can be obtained without compromising the tracking performance.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Target Tracking Using a Distributed Particle-Pda Filter With Sparsity-Promoting Likelihood Consensus\",\"authors\":\"Rene Repp, P. Rajmic, Florian Meyer, F. Hlawatsch\",\"doi\":\"10.1109/SSP.2018.8450815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a distributed particle-based probabilistic data association filter (PDAF) for target tracking in the presence of clutter and missed detections. The proposed PDAF employs a new “sparsity-promoting” likelihood consensus that uses the orthogonal matching pursuit for a sparse approximation of the local likelihood functions. Simulation results demonstrate that, compared to the conventional likelihood consensus based on least-squares approximation, large savings in intersensor communication can be obtained without compromising the tracking performance.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于分布式粒子的概率数据关联滤波器(PDAF),用于杂波和漏检情况下的目标跟踪。提出的PDAF采用了一种新的“促进稀疏性”的似然一致性,该似然一致性使用正交匹配追求来实现局部似然函数的稀疏逼近。仿真结果表明,与传统的基于最小二乘近似的似然一致性相比,在不影响跟踪性能的情况下,可以节省大量的传感器间通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target Tracking Using a Distributed Particle-Pda Filter With Sparsity-Promoting Likelihood Consensus
We propose a distributed particle-based probabilistic data association filter (PDAF) for target tracking in the presence of clutter and missed detections. The proposed PDAF employs a new “sparsity-promoting” likelihood consensus that uses the orthogonal matching pursuit for a sparse approximation of the local likelihood functions. Simulation results demonstrate that, compared to the conventional likelihood consensus based on least-squares approximation, large savings in intersensor communication can be obtained without compromising the tracking performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信