{"title":"低差异随机计算的流内相关操作","authors":"Sina Asadi, M. Najafi, M. Imani","doi":"10.1109/ICCAD51958.2021.9643450","DOIUrl":null,"url":null,"abstract":"Stochastic computing (SC) is a re-emerging computing paradigm providing low-cost and noise-tolerant designs for a wide range of arithmetic operations. SC circuits operate on uniform bit-streams with the value determined by the probability of observing 1's in the bit-stream. The accuracy of SC operations highly depends on the correlation between input bit-streams. While some operations such as minimum and maximum value functions require highly correlated inputs, some other such as multiplication operation need uncorrelated or independent inputs for accurate computation. Developing low-cost and accurate correlation manipulation circuits is an important research in SC as these circuits can manage correlation between bit-streams without expensive bit-stream regeneration. This work proposes a novel in-stream correlator and decorrelator circuit that manages 1) correlation between stochastic bit-streams, and 2) distribution of 1's in the output bit-streams. Compared to state-of-the-art solutions, our designs achieve lower hardware cost and higher accuracy. The output bit-streams enjoy a low-discrepancy distribution of bits which leads to higher quality of results. The effectiveness of the proposed circuits is shown with two case studies: SC design of sorting and median filtering.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CORLD: In-Stream Correlation Manipulation for Low-Discrepancy Stochastic Computing\",\"authors\":\"Sina Asadi, M. Najafi, M. Imani\",\"doi\":\"10.1109/ICCAD51958.2021.9643450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic computing (SC) is a re-emerging computing paradigm providing low-cost and noise-tolerant designs for a wide range of arithmetic operations. SC circuits operate on uniform bit-streams with the value determined by the probability of observing 1's in the bit-stream. The accuracy of SC operations highly depends on the correlation between input bit-streams. While some operations such as minimum and maximum value functions require highly correlated inputs, some other such as multiplication operation need uncorrelated or independent inputs for accurate computation. Developing low-cost and accurate correlation manipulation circuits is an important research in SC as these circuits can manage correlation between bit-streams without expensive bit-stream regeneration. This work proposes a novel in-stream correlator and decorrelator circuit that manages 1) correlation between stochastic bit-streams, and 2) distribution of 1's in the output bit-streams. Compared to state-of-the-art solutions, our designs achieve lower hardware cost and higher accuracy. The output bit-streams enjoy a low-discrepancy distribution of bits which leads to higher quality of results. The effectiveness of the proposed circuits is shown with two case studies: SC design of sorting and median filtering.\",\"PeriodicalId\":370791,\"journal\":{\"name\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD51958.2021.9643450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CORLD: In-Stream Correlation Manipulation for Low-Discrepancy Stochastic Computing
Stochastic computing (SC) is a re-emerging computing paradigm providing low-cost and noise-tolerant designs for a wide range of arithmetic operations. SC circuits operate on uniform bit-streams with the value determined by the probability of observing 1's in the bit-stream. The accuracy of SC operations highly depends on the correlation between input bit-streams. While some operations such as minimum and maximum value functions require highly correlated inputs, some other such as multiplication operation need uncorrelated or independent inputs for accurate computation. Developing low-cost and accurate correlation manipulation circuits is an important research in SC as these circuits can manage correlation between bit-streams without expensive bit-stream regeneration. This work proposes a novel in-stream correlator and decorrelator circuit that manages 1) correlation between stochastic bit-streams, and 2) distribution of 1's in the output bit-streams. Compared to state-of-the-art solutions, our designs achieve lower hardware cost and higher accuracy. The output bit-streams enjoy a low-discrepancy distribution of bits which leads to higher quality of results. The effectiveness of the proposed circuits is shown with two case studies: SC design of sorting and median filtering.