基于建构主义范式的神经网络训练

M.C.M. Teixeira, D. Lamas
{"title":"基于建构主义范式的神经网络训练","authors":"M.C.M. Teixeira, D. Lamas","doi":"10.1109/MWSCAS.1995.504497","DOIUrl":null,"url":null,"abstract":"The Backpropagation Algorithm (BA) is the standard method for training multilayer Artificial Neural Networks (ANN), although it converges very slowly and can stop in a local minimum. We present a new method for neural network training using the BA inspired on constuctivism, an alphabetization method proposed by Emilia Ferreiro (1985) based on Piaget philosophy. Simulation results show that the proposed configuration usually obtained a lower final mean square error, when compared with the standard BA and with the BA with momentum factor.","PeriodicalId":165081,"journal":{"name":"38th Midwest Symposium on Circuits and Systems. Proceedings","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural network training using the constructivism paradigms\",\"authors\":\"M.C.M. Teixeira, D. Lamas\",\"doi\":\"10.1109/MWSCAS.1995.504497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Backpropagation Algorithm (BA) is the standard method for training multilayer Artificial Neural Networks (ANN), although it converges very slowly and can stop in a local minimum. We present a new method for neural network training using the BA inspired on constuctivism, an alphabetization method proposed by Emilia Ferreiro (1985) based on Piaget philosophy. Simulation results show that the proposed configuration usually obtained a lower final mean square error, when compared with the standard BA and with the BA with momentum factor.\",\"PeriodicalId\":165081,\"journal\":{\"name\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1995.504497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th Midwest Symposium on Circuits and Systems. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1995.504497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

反向传播算法(BA)是训练多层人工神经网络(ANN)的标准方法,但它的收敛速度很慢,并且可能停在局部极小值。我们提出了一种新的神经网络训练方法,使用受建构主义启发的BA,这是Emilia Ferreiro(1985)基于皮亚杰哲学提出的字母排序方法。仿真结果表明,与标准BA和带动量因子的BA相比,所提构型的最终均方误差通常较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network training using the constructivism paradigms
The Backpropagation Algorithm (BA) is the standard method for training multilayer Artificial Neural Networks (ANN), although it converges very slowly and can stop in a local minimum. We present a new method for neural network training using the BA inspired on constuctivism, an alphabetization method proposed by Emilia Ferreiro (1985) based on Piaget philosophy. Simulation results show that the proposed configuration usually obtained a lower final mean square error, when compared with the standard BA and with the BA with momentum factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信