特征二有限域上Kloosterman和的可整除性

P. Charpin, T. Helleseth, V. Zinoviev
{"title":"特征二有限域上Kloosterman和的可整除性","authors":"P. Charpin, T. Helleseth, V. Zinoviev","doi":"10.1109/ISIT.2008.4595463","DOIUrl":null,"url":null,"abstract":"Let K(a) be the so-called classical Kloosterman sums over F2m, where m is even. In this paper, we compute K(a) modulo 24, completing our previous results for odd m. We extensively study the links between K(a) and other exponential sums, in particular with the cubic sums. We point out (as we did for odd m) that the values K(a) are related with cosets of weight 4 of primitive narrow sense extended BCH codes of length n = 2m and minimum distance 8.","PeriodicalId":194674,"journal":{"name":"2008 IEEE International Symposium on Information Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Divisibility properties of Kloosterman sums over finite fields of characteristic two\",\"authors\":\"P. Charpin, T. Helleseth, V. Zinoviev\",\"doi\":\"10.1109/ISIT.2008.4595463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let K(a) be the so-called classical Kloosterman sums over F2m, where m is even. In this paper, we compute K(a) modulo 24, completing our previous results for odd m. We extensively study the links between K(a) and other exponential sums, in particular with the cubic sums. We point out (as we did for odd m) that the values K(a) are related with cosets of weight 4 of primitive narrow sense extended BCH codes of length n = 2m and minimum distance 8.\",\"PeriodicalId\":194674,\"journal\":{\"name\":\"2008 IEEE International Symposium on Information Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2008.4595463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2008.4595463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

设K(a)是F2m上的经典Kloosterman和,其中m是偶数。在本文中,我们计算K(a)对24的模,完成了我们之前对奇数m的结果。我们广泛地研究了K(a)与其他指数和之间的联系,特别是与三次和。我们指出(正如我们对奇数m所做的那样)值K(a)与长度n = 2m,最小距离8的原始狭义扩展BCH码的权值4的余集有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divisibility properties of Kloosterman sums over finite fields of characteristic two
Let K(a) be the so-called classical Kloosterman sums over F2m, where m is even. In this paper, we compute K(a) modulo 24, completing our previous results for odd m. We extensively study the links between K(a) and other exponential sums, in particular with the cubic sums. We point out (as we did for odd m) that the values K(a) are related with cosets of weight 4 of primitive narrow sense extended BCH codes of length n = 2m and minimum distance 8.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信