T. Koyama, T. Honjo, Masataka Ishihara, K. Umetani, E. Hiraki
{"title":"用于谐振电感耦合无线电力传输的简易自驱动同步整流器","authors":"T. Koyama, T. Honjo, Masataka Ishihara, K. Umetani, E. Hiraki","doi":"10.1109/INTLEC.2017.8214163","DOIUrl":null,"url":null,"abstract":"Resonant inductive coupling wireless power transfer (RIC-WPT) is attracting attention as a convenient power supply method to small mobile apparatus. The efficiency and the power transfer capability of RIC-WPT has been known to be profoundly dependent on the quality factor of the receiving resonator. However, the quality factor of the receiving resonator tends to be deteriorated because of the conduction loss at the diode rectifier, particularly for low output voltage applications. In order to improve the efficiency and the power transfer capability, this paper propose a novel simple synchronous rectifier, which can reduce the conduction loss. The proposed rectifier has simple circuit configuration, which contributes to straightforward application to the wireless power transfer to small mobile apparatus with limited installation space. Experiment was carried out to verify the operation principle of the proposed rectifier. As a result, the proposed rectifier revealed successful suppression of the conduction loss. In addition, the experimental wireless power transfer system verified successful improvement in the rectification efficiency, supporting usefulness of the proposed rectifier for practical applications of the RIC-WPT for small mobile apparatus.","PeriodicalId":366207,"journal":{"name":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Simple self-driven synchronous rectifier for resonant inductive coupling wireless power transfer\",\"authors\":\"T. Koyama, T. Honjo, Masataka Ishihara, K. Umetani, E. Hiraki\",\"doi\":\"10.1109/INTLEC.2017.8214163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resonant inductive coupling wireless power transfer (RIC-WPT) is attracting attention as a convenient power supply method to small mobile apparatus. The efficiency and the power transfer capability of RIC-WPT has been known to be profoundly dependent on the quality factor of the receiving resonator. However, the quality factor of the receiving resonator tends to be deteriorated because of the conduction loss at the diode rectifier, particularly for low output voltage applications. In order to improve the efficiency and the power transfer capability, this paper propose a novel simple synchronous rectifier, which can reduce the conduction loss. The proposed rectifier has simple circuit configuration, which contributes to straightforward application to the wireless power transfer to small mobile apparatus with limited installation space. Experiment was carried out to verify the operation principle of the proposed rectifier. As a result, the proposed rectifier revealed successful suppression of the conduction loss. In addition, the experimental wireless power transfer system verified successful improvement in the rectification efficiency, supporting usefulness of the proposed rectifier for practical applications of the RIC-WPT for small mobile apparatus.\",\"PeriodicalId\":366207,\"journal\":{\"name\":\"2017 IEEE International Telecommunications Energy Conference (INTELEC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Telecommunications Energy Conference (INTELEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTLEC.2017.8214163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2017.8214163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simple self-driven synchronous rectifier for resonant inductive coupling wireless power transfer
Resonant inductive coupling wireless power transfer (RIC-WPT) is attracting attention as a convenient power supply method to small mobile apparatus. The efficiency and the power transfer capability of RIC-WPT has been known to be profoundly dependent on the quality factor of the receiving resonator. However, the quality factor of the receiving resonator tends to be deteriorated because of the conduction loss at the diode rectifier, particularly for low output voltage applications. In order to improve the efficiency and the power transfer capability, this paper propose a novel simple synchronous rectifier, which can reduce the conduction loss. The proposed rectifier has simple circuit configuration, which contributes to straightforward application to the wireless power transfer to small mobile apparatus with limited installation space. Experiment was carried out to verify the operation principle of the proposed rectifier. As a result, the proposed rectifier revealed successful suppression of the conduction loss. In addition, the experimental wireless power transfer system verified successful improvement in the rectification efficiency, supporting usefulness of the proposed rectifier for practical applications of the RIC-WPT for small mobile apparatus.