进位值变换(CVT)和异或(XOR)范式中的有效除法

J. Das, P. Choudhury
{"title":"进位值变换(CVT)和异或(XOR)范式中的有效除法","authors":"J. Das, P. Choudhury","doi":"10.1109/IACC.2017.0139","DOIUrl":null,"url":null,"abstract":"Previously many works regarding addition and subtraction of two integers are done in CVT-XOR paradigm. It has been also seen that performance using Cellular automata machine (CAM) for addition and subtraction in CVT and XOR paradigm is much faster. In this current study, we mainly focus to handle the division algorithm and associated complexity in this paradigm. We also proposed a block diagram model of division algorithm which could be very much helpful for VLSI implementation on using recursive CAM.","PeriodicalId":248433,"journal":{"name":"2017 IEEE 7th International Advance Computing Conference (IACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Division in Carry Value Transformation (CVT) and Exclusive OR (XOR) Paradigm\",\"authors\":\"J. Das, P. Choudhury\",\"doi\":\"10.1109/IACC.2017.0139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previously many works regarding addition and subtraction of two integers are done in CVT-XOR paradigm. It has been also seen that performance using Cellular automata machine (CAM) for addition and subtraction in CVT and XOR paradigm is much faster. In this current study, we mainly focus to handle the division algorithm and associated complexity in this paradigm. We also proposed a block diagram model of division algorithm which could be very much helpful for VLSI implementation on using recursive CAM.\",\"PeriodicalId\":248433,\"journal\":{\"name\":\"2017 IEEE 7th International Advance Computing Conference (IACC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACC.2017.0139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACC.2017.0139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以前关于两个整数的加减法的许多工作都是在CVT-XOR范式中完成的。在无级变速和异或模式下,使用元胞自动机(CAM)进行加减法运算的速度要快得多。在本研究中,我们主要关注该范式下的除法算法及其相关的复杂度。我们还提出了一个除法算法的框图模型,这对使用递归CAM实现VLSI有很大的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Division in Carry Value Transformation (CVT) and Exclusive OR (XOR) Paradigm
Previously many works regarding addition and subtraction of two integers are done in CVT-XOR paradigm. It has been also seen that performance using Cellular automata machine (CAM) for addition and subtraction in CVT and XOR paradigm is much faster. In this current study, we mainly focus to handle the division algorithm and associated complexity in this paradigm. We also proposed a block diagram model of division algorithm which could be very much helpful for VLSI implementation on using recursive CAM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信