基于拉普拉斯的动态图形可视化

Limei Che, Jie Liang, Xiaoru Yuan, Jianping Shen, Jinquan Xu, Yong Li
{"title":"基于拉普拉斯的动态图形可视化","authors":"Limei Che, Jie Liang, Xiaoru Yuan, Jianping Shen, Jinquan Xu, Yong Li","doi":"10.1109/PACIFICVIS.2015.7156358","DOIUrl":null,"url":null,"abstract":"Visualizing dynamic graphs are challenging due to the difficulty to preserving a coherent mental map of the changing graphs. In this paper, we propose a novel layout algorithm which is capable of maintaining the overall structure of a sequence graphs. Through Laplacian constrained distance embedding, our method works online and maintains the aesthetic of individual graphs and the shape similarity between adjacent graphs in the sequence. By preserving the shape of the same graph components across different time steps, our method can effectively help users track and gain insights into the graph changes. Two datasets are tested to demonstrate the effectiveness of our algorithm.","PeriodicalId":177381,"journal":{"name":"2015 IEEE Pacific Visualization Symposium (PacificVis)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Laplacian-based dynamic graph visualization\",\"authors\":\"Limei Che, Jie Liang, Xiaoru Yuan, Jianping Shen, Jinquan Xu, Yong Li\",\"doi\":\"10.1109/PACIFICVIS.2015.7156358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualizing dynamic graphs are challenging due to the difficulty to preserving a coherent mental map of the changing graphs. In this paper, we propose a novel layout algorithm which is capable of maintaining the overall structure of a sequence graphs. Through Laplacian constrained distance embedding, our method works online and maintains the aesthetic of individual graphs and the shape similarity between adjacent graphs in the sequence. By preserving the shape of the same graph components across different time steps, our method can effectively help users track and gain insights into the graph changes. Two datasets are tested to demonstrate the effectiveness of our algorithm.\",\"PeriodicalId\":177381,\"journal\":{\"name\":\"2015 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACIFICVIS.2015.7156358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2015.7156358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

可视化动态图形是具有挑战性的,因为很难保持变化图形的连贯的心理地图。本文提出了一种新的能够保持序列图整体结构的布局算法。通过拉普拉斯约束距离嵌入,该方法在线工作,保持了单个图的美感和序列中相邻图之间的形状相似性。通过在不同时间步长中保持相同图形组件的形状,我们的方法可以有效地帮助用户跟踪和洞察图形的变化。通过对两个数据集的测试,验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laplacian-based dynamic graph visualization
Visualizing dynamic graphs are challenging due to the difficulty to preserving a coherent mental map of the changing graphs. In this paper, we propose a novel layout algorithm which is capable of maintaining the overall structure of a sequence graphs. Through Laplacian constrained distance embedding, our method works online and maintains the aesthetic of individual graphs and the shape similarity between adjacent graphs in the sequence. By preserving the shape of the same graph components across different time steps, our method can effectively help users track and gain insights into the graph changes. Two datasets are tested to demonstrate the effectiveness of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信